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Abstract

In this paper, we obtain a set of “easily verifiable” sufficient conditions for the existence of the periodic solutions of the first-
order linear functional differential equations with periodic perturbation

x ′(t) = l(x)(t) + f (t, xt ),

where l : C(R) → C(R) is a linear bounded operator. These conditions generalize and improve the known results given in the
literature.
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1. Introduction

Let BC(R, R) be the Banach space of bounded continuous functions x : R → R with the sup norm ‖x‖ =

sup{|x(t)| : t ∈ R} and let

Cω(R) = {x ∈ BC(R, R) : x(t + ω) = x(t), t ∈ R},

where ω > 0. Define the norms as follows:

‖x‖0 = max{|x(t)| : 0 ≤ t ≤ ω}, ‖x‖1 =

∫ ω

0
|x(t)|dt, ∀x ∈ Cω(R).

Consider the first-order functional differential equations

x ′(t) = l(x)(t) + f (t, xt ), (1.1)
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and the particular case

x ′(t) = l(x)(t) + g(t), (1.2)

where l : C(R) → C(R) is a linear bounded operator and l(Cω(R)) ⊆ Cω(R), g ∈ Cω(R), and f ∈ C(R ×

BC(R, R), R), for any t ∈ R, f (t, ·) mapping a bounded set in BC(R, R) into a bounded set in R and satisfying
f (t + ω, ϕ) = f (t, ϕ) for (t, ϕ) ∈ R × BC(R, R). Everywhere in what follows, we will assume that the operator l is
nontrivial and admits the representation

l(x)(t) = −a(t)x(t) + l1(x)(t) − l2(x)(t), (1.3)

where a ∈ Cω(R), l1, l2 : Cω(R) → Cω(R) are linear and satisfy the condition

l1(x)(t) ≥ 0, l2(x)(t) ≥ 0, ∀t ∈ [0, ω] if x(t) ≥ 0, ∀t ∈ [0, ω].

In the representation (1.3), we list the instantaneous term a(t)x(t) as an independent one, because the instantaneous
term always plays an important role in the existence and stability of the periodic solution for Eq. (1.1).

The common particular case of Eq. (1.2) is the following linear equation with deviating arguments:

x ′(t) = p0(t)x(t) +

n∑
i=1

pi (t)x(t − τi (t)) + g(t), (1.4)

where g ∈ Cω(R) and p0, pi , τi ∈ Cω(R), i = 1, 2, . . . , n. For Eq. (1.4), we find that

l1(x)(t) =

n∑
i=1

[pi (t)]+x(t − τi (t)), l2(x)(t) =

n∑
i=1

[pi (t)]−x(t − τi (t)),

where here and in the sequel, [x]+ = (|x | + x)/2, [x]− = (|x | − x)/2.
It is known (see, e.g., [10]) that Eq. (1.2) has a unique ω-periodic solution if and only if the corresponding

homogeneous equation

x ′(t) = l(x)(t), (1.5)

has only a trivial ω-periodic solution. In view of this fact, [1,10,16] gave a set of conditions which guarantee that
Eq. (1.2) has a unique ω-periodic solution. In the paper [11], Ma, Yu and Wang further proved that the homogeneous
equation (1.5) having only a trivial ω-periodic solution implies that Eq. (1.1) has at least one ω-periodic solution under
the additional restriction

(H1) lim‖ϕ‖→∞
| f (t,ϕ)|

‖ϕ‖
= 0 uniformly in t ∈ R.

In this paper, our main purpose is to derive a set of “easily verifiable” sufficient conditions for the existence of
the periodic solutions of Eq. (1.1). These conditions generalize and improve the known results given in the literature
(see [1,4,6,7,10,16]). For example, consider Eq. (1.4) with p0(t) ≥ 0 and pi (t) ≤ 0, i = 1, 2, . . . , n. In paper [1], it
is shown that if

‖p0‖1 <

n∑
i=1

‖pi‖1

1 +

n∑
i=1

‖pi‖1

(1.6)

and

n∑
i=1

‖pi‖1 < 4 (1 − ‖p0‖1) , (1.7)

or

n∑
i=1

∫ ω

0
|pi (t)| exp

(∫ ω

t
p0(s)ds

)
< 4, (1.8)
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