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Abstract

By means of variational structure and Z2-group index theory, we obtain infinite periodic solutions to a class second-order
Sturm–Liouville neutral delay equations

(p(t)x ′(t − sτ))′ − q(t)x(t − sτ) + f (t, x(t), x(t − τ), x(t − 2τ), . . . , x(t − 2sτ)) = 0.
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1. Introduction

Recently, the existence and multiplicity of periodic solutions for second-order neutral differential equations have
received a good deal of attention (see [2–7]).

But, for the existence of periodic solutions of functional differential equations, one commonly uses the method
of fixed point theory, the coincidence degree theory, the Fourier analysis method etc; one rarely uses the means of
critical point theory. In [8] and [9], the authors obtained multiple periodic solutions for a class of retarded differential
equations by means of critical point theory and Z p group index theory. Nevertheless, we note that these results were
obtained by reducing retarded differential equations to related ordinary differential equations.

In [1], by using critical point theory and Z2 group index theory, unlike the literature [8,9], we obtained the sufficient
condition for there to exist infinite nontrivial 2γ τ -periodic solutions to the neutral differential equation (1.1) without
reducing it to an ordinary differential equation:

x ′′(t − sτ) + f (t, x(t), x(t − τ), x(t − 2τ), . . . , x(t − 2sτ)) = 0, τ > 0. (1.1)
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In this paper, by using critical point theory and Z2 group index theory, we obtain infinite periodic solutions to the
second-order Sturm–Liouville neutral delay equations

(p(t)x ′(t − sτ))′ − q(t)x(t − sτ) + f (t, x(t), x(t − τ), x(t − 2τ), . . . , x(t − 2sτ)) = 0. (1.2)

For the reader’s convenience, we recall some basic definitions.

Definition 1.1. Let E be a real Banach space, and f ∈ C1(E, R). A critical point of f is a point where f ′(x) = 0.
A critical value of f is a number c such that f (x) = c for some critical points x . K is a critical set where
K = {x ∈ E | f ′(x) = 0}, Kc = {x ∈ E | f ′(x) = 0, f (x) = c}. fc is a level set if fc = {x ∈ E; | f (x) ≤ c}.

Definition 1.2. Let E be a real Banach space, and f ∈ C1(E, R); we say that f satisfies the Palais–Smale condition
if every sequence {xn} ⊂ E such that { f (xn)} is bounded and f ′(xn) → 0(n → ∞) has a converging subsequence.

Definition 1.3. Let E be a real Banach space, and Σ = {A | A ⊂ E \ {θ} be a closed, symmetric set }. Define
γ : Σ → Z+

∪ {+∞} as follows:

γ (A) =

min {n ∈ Z : there exists an odd continuous map ϕ : A → Rn
\ {θ}};

0 If A = ∅;

+∞ If there is no odd continuous map ϕ : A → Rn
\ {θ} for any n ∈ Z .

We say that “γ is the genus of Σ ”.

Lemma 1.4 ([10] ChangKung Ching). Let f ∈ C1(X, R) be an even functional which satisfies the Palais–Smale
condition and f (θ) = 0. If

(P1) there exist constants ρ > 0, a > 0 and a finite dimensional subspace E of X, such that f (x) |E⊥∩Sρ
≥ a, where

Sρ = {x ∈ X : ‖x‖X = ρ};
(P2) for all finite dimensional subspaces Ê of X, there is an r = r(Ê) > 0, such that f (x) ≤ 0 for x ∈ Ê \ Br .

Then, f possesses an unbounded sequence of critical values.

Lemma 1.5. Let E be a Hilbert space; if the weak convergence sequence {xn} ⊂ E (i.e., there exists x0 such that
xn ⇀ x0) satisfies ‖xn‖ → ‖x0‖(n → ∞), then {xn} is convergent in E, i.e., xn → x0.

Proof. By

‖xn − x0‖
2

= (xn − x0, xn − x0)

= ‖xn‖
2
− (x0, xn) − (xn, x0) + ‖x0‖ (n = 1, 2, 3, . . .)

and continuity of the inner product, it is easy to see that

lim
n→∞

‖xn − x0‖
2

= ‖x0‖
2
− 2(x0, x0) + ‖x0‖

2
= 0,

that is to say xn → x0(n → ∞).
In this paper, we use Lemma 1.4 to deal with multiple periodic solutions of the system (1.2).
Our basic assumptions is that:

(A1) f (t, u1, u2, . . . , u2s+1) ∈ C(R2(s+1), R), and ∂ f (t,u1,u2,...,u2s+1)

∂t 6= 0;
(A2) there exists a continuously differentiable function F(t, u1, u2, . . . , us, us+1) ∈ C1(Rs+2, R) such that

F ′
us+1

(t, u1, u2, . . . , us, us+1) + F ′
us+1

(t, u2, u3, . . . , us+2) + · · · + F ′
us+1

(t, us+1, us+2, . . . , u2s+1)

= f (t, u1, u2, . . . , u2s+1);

(A3) F(t + τ, u1, u2, . . . , us+1) = F(t, u1, u2, . . . , us+1) for all u1, u2, . . . , us, us+1 ∈ R;
(A4) p(t), q(t) ∈ C1

[0, τ ] are τ -periodic functions and p(t) > 0, q(t) > 0;
(A5) F satisfies: F(t, −u1, −u2, . . . ,−us+1) = F(t, u1, u2, . . . , us+1), and

f (t, −u1, −u2, . . . ,−u2s+1) = − f (t, u1, u2, . . . , u2s+1).
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