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Abstract

We obtain the nonlinear versions of the Stampacchia theorem and the Lax–Milgram theorem. Our results are stronger than the
classical ones even in the linear case. Applying these theorems we get nontrivial solutions of p-Laplace elliptic and pseudo-p-
Laplace problems.
c© 2007 Elsevier Ltd. All rights reserved.

MSC: 49J40; 35J20; 35J60; 58E05

Keywords: Stampacchia theorem; Lax–Milgram theorem; p-Laplacian; Pseudo-p-Laplacian; Nontrivial solution; Non-uniform elliptic problems

1. Introduction

To solve partial differential equations, we can use the following theorems (see [3,9,15]).

Theorem (Lax Milgram). Let a be a continuous coercive bilinear form on a Hilbert space H and T be a continuous
linear form on H. Then there is a unique vector u in H such that

a(u, v) = T (v) ∀v ∈ H.

Theorem (Stampacchia). Let a be a continuous coercive bilinear form on a Hilbert space H, T be a continuous
linear form on H, and K be a non-empty closed convex subset of H. Then there is a unique vector u in K such that

a(u, u − v) ≥ T (u − v) ∀v ∈ K .

For nonlinear problems such as p-Laplace elliptic equations and inequalities, we can use the following extension
of the Stampacchia theorem (see [3]).

Theorem (Minty–Browder). Let E be a reflexive Banach space. Let A be a (nonlinear) continuous mapping from E
into its dual space E ′ such that
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(i) (Av − Aw)(v − w) > 0 ∀v,w ∈ E, v 6= w.
(ii) lim‖v‖→∞ ‖v‖−1(Av)(v) = ∞.

Then, for any b in E ′ there is a unique u in E such that Au = b.

In applications to partial differential equations, a(u, v), T (v) and Au(v) in the above theorems are usually
D f (u)(v), Dg(u)(v) and DJ (u)(v), where D f , Dg and DJ are derivatives of some functionals f , g and J
respectively. This observation suggests relations between the above theorems and the Lagrange multiplier theorem.
The essential difference between them is the presence of multipliers in the Lagrange multiplier theorem. In the linear
case studied in [2] we used the homogeneity with different orders of two sides in the equation of the Lax–Milgram
theorem to eliminate these multipliers and get the result. This technique could not be applied for nonlinear cases (see
the left-hand side of the equation in the Minty–Browder theorem, for example).

In the present paper, we point out that we need not homogeneity but homogeneity inequalities to deal with
inequalities in the Stampacchia theorem (see condition (FG) in Theorem 2.1). This technique cannot be applied to
equations of the Lax–Milgram theorem. To overcome this difficulty, we prove that the Lagrange multiplier in this case
should be 0 or 1 (see Theorem 2.2) and we get a generalized Lax–Milgram theorem.

In the second section of this paper we obtain nonlinear versions of these theorems by applying the Lagrange
multiplier theorem in [2]. Our results are stronger than the classical ones even in the linear case.

Applying these theorems we get nontrivial solutions of p-Laplace and pseudo-elliptic equations and inequalities
in the last sections. Our results can be applied to equations to which the methods in [4–8,10–14] are not applicable.
When one uses the mountain-pass theorem, the boundedness of the Palais–Smale sequence requires some conditions
of functionals that we do not need here in applying the techniques of the Lagrange multiplier theorem.

2. Nonlinear versions of the Stampacchia theorem and the Lax–Milgram theorem

First we need some definitions and notations.

Definition 2.1. Let ϕ be a mapping from a normed space (X, ‖.‖X ) into [−∞,∞]. We say ϕ is of classA(X) if there
are two mappings η and µ from [0,∞)× [0,∞) and [0,∞) respectively into [0,∞) such that

(A1) |ϕ(x + y)| ≤ η(|ϕ(x)|, |ϕ(y)|) ∀x, y ∈ X ,
(A2) |ϕ(t x)| ≤ µ(|t |)|ϕ(x)| ∀t ∈ R, x ∈ X .

For any given mapping ϕ of class A(X) we put

VX,ϕ = {x ∈ X : |ϕ(x)| < ∞}.

It is clear that VX,ϕ is a linear subspace of X for any ϕ in A(X).

Definition 2.2. Let U be an open subset of a normed space (X, ‖.‖X ), G be a linear subspace of X , and f be a
function from U into R. For any (x, h) ∈ U × G we define

U (x, h) = {t ∈ R : x + th ∈ U } and

f(x,h)(t) = f (x + th) ∀t ∈ U (x, h).

Since U is open in X , it is clear that U (x, h) is an open subset of R. We say
(i) f is G-continuous on U if and only if f(x,h) is continuous at 0 for any (x, h) in U × G.
(ii) f is G-differentiable at x if and only if there exists a linear mapping D f (x) from G into R such that

lim
t→0

f (x + th)− f (x)

t
= D f (x)(h) ∀h ∈ G.

(iii) f is G-differentiable on U if f is G-differentiable at every x in U .
(iv) f is strongly G-differentiable at x if and only if there exists a linear mapping D f (x) from G into R such that

lim
(s,t)→0

f (x + sth + sk)− f (x)

s
= D f (x)(k) ∀h, k ∈ G.
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