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Existence and global attractivity of unique positive
periodic solution for a Lasota–Wazewska model�
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Abstract

In this paper we consider the Lasota–Wazewska model

x′(t) = −a(t)x(t) +
m∑

i=1

pi(t)e
−qi (t)x(t−�i (t)).

By using a fixed point theorem, some criteria are established for the existence of the unique positive �-
periodic solution x̃ of the above equation. In particular, we not only give the conclusion of convergence
of xn to x̃, where {xn} is a successive sequence, but also show that x̃ is a global attractor of all other
positive solutions.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Functional differential equations with periodic delays appear in some ecological models,
for example, the model of dynamic disease [14] and the model of the survival of red blood
cells in an animal [18], and so on. For these equations, one of the important properties is
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whether they can support positive periodic solutions. In addition, the asymptotic behavior
of periodic solutions is also very important. In recent years, periodic population dynamics
has become a very popular subject. Several different periodic models have been studied by
many authors. See [1,3,6–13,15–17,19] and references therein.

In this paper, we shall study the existence and global attractivity of unique positive
periodic solution of the following generalized Lasota–Wazewska model

x′(t) = −a(t)x(t) +
m∑

i=1

pi(t)e
−qi (t)x(t−�i (t)), t �0. (1)

Some special cases of Eq. (1) have been investigated. For example, the delay differential
equation

x′(t) = −�x(t) + �e−�x(t−�), t �0, (2)

where �, �, � and � are positive constants, was used by Wazewska–Czyzewska and Lasota
[18] as a model for the survival of red blood cells in an animal. The oscillation and global
attractivity of Eq. (2) have been studied by Kulenovic and Ladas [11] and by Kulenovic et al.
[12], respectively. For further investigation in this area, for example, the delay differential
equations

x′(t) = −�x(t) +
m∑

i=1

pi e−rix(t−�i ), t �0, (3)

where � and pi, ri, �i (i = 1, 2, . . . , m) are positive constants,

x′(t) = −�(t)x(t) + �(t)e−x(t−m�), t �0, (4)

where � and � are positive �-periodic functions, and

x′(t) = −�(t)x(t) + �(t)e−x(t−�(t)), t �0, (5)

where �, �, � are positive �-periodic functions, see Xu and Li [19], Graef et al. [3], Jiang
and Wei [7]. In addition, Gopalsamy and Trofimchuk[2] have investigated the existence
of a globally attractive almost periodic solution of a single species model given by the
nonautonomous Lasota–Wazewska-type delay differential equations

x′(t) = −�(t)x(t) + p(t)f (x(t − �)), (6)

where � > 0, p(t)�0, �(t) are continuous almost periodic functions, and f is a decreasing
positive C1-function.

In Eq. (1), we shall use the following hypotheses:

(H1) a, pi and qi (i = 1, 2, . . . , m) are positive continuous �-periodic functions;
(H2) �i (i = 1, 2, . . . , m) are continuous �-periodic functions.

For convenience, we shall introduce the notations:

h̄ = max
t∈[0,�] {h(t)}, h = min

t∈[0,�] {h(t)},
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