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Abstract

In this paper we develop an intrinsic approach to derivation of energy decay rates for the semilinear
wave equation with localized interior nonlinear monotone damping g(u;) and a source term f(u).
The proposed approach allows to consider, in an unified way, much more general classes of hyperbolic
problems than addressed before in the literature. These generalizations refer to both geometric and
topological aspects of the problem.

The method leads to optimal decay rates for solutions of semilinear hyperbolic equations driven by a
source of critical exponent and subjected to a nonlinear damping localized in a small region adjacent
to a portion of the boundary. The distinct features of the model include: (i) Neumann boundary
conditions are assumed and, (ii) no growth conditions are imposed on the damping g(s). It is well
known that Neumann boundary does not satisfy Lopatinski condition and, therefore, the analysis of
propagation of energy in the absence of the damping on the Neumann part of the boundary requires
special geometric considerations. In addition, the sole conditions assumed on g(s) are monotonicity,
continuity and g(0) =0. In particular, no differentiability and no growth conditions are imposed on the
damping both at the origin and at the infinity. The asymptotic decay rates for the energy function are
obtained from an intrinsic algorithm driven by solutions of simple ODE. Several examples illustrate
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the theory by exhibiting various decay rates (exponential, algebraic, rational, logarithmic, etc.) for
the energy functional.

An important corollary of our energy decay theorem is a stability result which shows that, under
certain conditions, when dissipation is sublinear at infinity, the solution of the system remains uni-
formly bounded for all time in the norms above the finite energy level, even in the presence of a
nonlinear source term.
© 2005 Published by Elsevier Ltd.
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1. Introduction

Let Q be an open bounded connected domain in R", with locally Lipschitz boundary I
Define Q7 = [0, T] x Q, X7 = [0, T] x I', and let || - || stand for L%(£2) norm.

Consider the following model of the wave equation with localized damping yg(u,) and
source term f (u):

urr — Au+ yg(us) = f(u) in Qr,
u(0) = u, (D
1, (0) = .

The functions g (resp. f) represent Nemytski operators associated with scalar, continu-
ous real-valued functions g(s) (resp. f(s)). Function g(s), assumed monotone increasing,
models dissipation in the equation. Instead, function f(s) corresponds to the modeling of
a source. The dissipation is assumed to act on small subportion of the domain €, hence
we introduce a map y which is the characteristic function of a subset €, of €. Precise
description of €, will be given later, for now it suffices to say that £2,, covers a thin layer
(a collar) near a portion of the boundary.

The aim of this paper is to study asymptotic behavior (as # — 00) and related decay rates
for the corresponding solutions evolving in the standard for the wave equation finite energy
space H'(Q) x L*(Q) (precise definition of the energy space will be given later). In order
to analyze the problem and state the results, we must specify boundary conditions (BC) for
(1). As we shall see below, BC play an important role in our analysis; we are predominantly
interested in the Neumann-type BC, which do not satisfy Lopatinski condition and therefore
are the most challenging in the context of this problem.

1.1. Boundary conditions

A distinct feature of the paper is the analysis of dynamics under Neumann BC, that do
not satisty Lopatinski condition. Before specifying the boundary dynamics, we introduce a
few definitions. Divide the boundary I into parts: I'g and I'; so that I' = I'g U I'1. We set
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