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Wasserstein kernels for one-dimensional diffusion problems
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Abstract

We treat the evolution as a gradient flow with respect to the Wasserstein distance on a special manifold and construct the weak
solution for the initial-value problem by using a time-discretized implicit scheme. The concept of Wasserstein kernel associated
with one-dimensional diffusion problems with Neumann boundary conditions is introduced. On the basis of this, features of the
initial data are shown to propagate to the weak solution at almost all time levels, whereas, in a case of interest, these features even
help with obtaining the weak solution. Numerical simulations support our theoretical results.
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1. Introduction

1.1. Overview

This work is organized as follows. First we present the general problem and the main tools pertaining to the present
approach. We define the Wasserstein kernel, then we use it in two different instances to prove convergence of the
time interpolants (based on the minimizers from the implicit schemes) to the weak solution. Convergence for an
inhomogeneous porous medium equation with exponent γ = 2 is analyzed first, and this is followed by a much more
detailed study of a Stefan problem. The latter includes numerical simulations that confirm the theoretical results.

Let us begin by recalling the setting in [15]. Basically, there we study the N -dimensional generalization of the
following inhomogeneous diffusion problem:

ut − f (u)xx = g(x, t, u) in (0, 1)× (0, T ) and f (u)x = 0 on {0, 1} × (0, T ), (Pf )

where f : [0,∞) → R, g : R3
→ R are functions with certain properties (see [15]; the cases studied here are

encompassed). Let 0 < T < ∞. We recall the following:

Definition 1. A function u ∈ L∞((0, 1)×(0, T )) is a weak solution for (Pf ) if it satisfies f (u)x ∈ L1((0, 1)×(0, T ))
and ∫ T

0

∫ 1

0
{uζt − f (u)xζx + g(·, ·, u)ζ }dxdt = −

∫ 1

0
u0ζ(·, 0)dx,
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for all ζ ∈ C∞
c ([0, 1] × [0, T )).

We also have a weaker notion, given by:

Definition 2. A function u ∈ L∞((0, 1)× (0, T )) is a generalized solution for (Pf ) if it satisfies∫ T

0

∫ 1

0
{uζt + f (u)ζxx + g(·, ·, u)ζ }dxdt = −

∫ 1

0
u0ζ(·, 0)dx,

for all ζ ∈ C∞
c ([0, 1] × [0, T )) such that ζx (0, t) = ζx (1, t) = 0 for all t > 0.

Consider now two Lebesgue integrable nonnegative functions u1 and u2 of the same positive total mass. We recall
the definition of the Wasserstein distance of order 2 as found in [7,14,12], etc. For this purpose we introduce

P(u1, u2) :=

{
nonnegative Borel measure µ on [0, 1] × [0, 1]

∣∣∣∣∣
∫ 1

0

∫ 1

0
ξ(x)dµ(x, y)

=

∫ 1

0
ξ(x)u1(x)dx and

∫ 1

0

∫ 1

0
ξ(y)dµ(x, y) =

∫ 1

0
ξ(y)u2(y)dy for all ξ ∈ C[0, 1]

}
as the set of all admissible transfer plans, between the nonnegative finite measures (of the same total mass) u1dx and
u2dx .

Definition 3. The (square of the) Wasserstein distance (of order 2) is defined as

d(u1, u2)
2

:= inf
µ∈P(u1,u2)

∫ 1

0

∫ 1

0
|x − y|

2dµ(x, y).

Properties of the Wasserstein distance will be referenced as they are used throughout this paper.
As Kinderlehrer and Walkington discuss in [10], the functional

S f (u) :=

∫ 1

0
Φ f (u)dx, u ∈Mu∗ (see (1.3)),

is decreasing along the trajectories of (Pf ), where Φ f satisfies yΦ′

f (y)− Φ f (y) = f (y), but one cannot realize u as
the gradient flow of the functional S f in a conventional sense. We demonstrate in [15] that, formally, a solution for
(Pf ) is a gradient flow of S f on a certain manifold with respect to the Wasserstein distance. This is done by means
of the equivalence between the Wasserstein distance and a certain induced distance onMu∗ (proved by Otto in [13]).
The approximants for the weak solution are obtained by time-step discretizing the gradient flow. Next, we go briefly
over this construction.

1.2. Preliminaries

Let u∗
∈ L1(0, 1) be nonnegative of positive total mass and let h > 0 be fixed. We define the nonlinear functional

F[h, u∗
] :Mu∗ → [0,∞) by

F[h, u∗
](u) =

1
2h

d(u, u∗)2 + S f (u). (1.1)

The gradient flow of S f onMu∗ w.r.t. the Wasserstein distance admits a time-step discretization of the form (see [13,
12])

Minimize F[h, u∗
](u) among all u ∈Mu∗ , (1.2)

where

Mu∗ :=

{
u : (0, 1) → [0,∞)

∣∣∣∣∣u is measurable and
∫ 1

0
udx =

∫ 1

0
u∗dx

}
. (1.3)

We will now state the following:
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