

Available online at www.sciencedirect.com

Nonlinear Analysis 68 (2008) 507-514

www.elsevier.com/locate/na

Blow-up and global solutions for nonlinear reaction—diffusion equations with Neumann boundary conditions

Juntang Ding*, Shengjia Li

School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China

Received 2 October 2005; accepted 8 November 2006

Abstract

The type of problem under consideration is

$$\begin{cases} \left((1+u)\ln^{\alpha}(1+u)\right)_{t} = \nabla \cdot \left(\ln^{\sigma}(1+u)\nabla u\right) + (1+u)\ln^{\beta}(1+u), & \text{in } D \times (0,T), \\ \frac{\partial u}{\partial n} = 0, & \text{on } \partial D \times (0,T), \\ u(x,0) = u_{0}(x) > 0, & \text{in } \bar{D}, \end{cases}$$

where $D \subset R^N$ is a bounded domain with smooth boundary ∂D , $N \geq 2$. It is proved that if $\beta - 1 > \sigma \geq \alpha \geq 0$, the positive solution u(x,t) blows up globally in \bar{D} , whereas if $0 \leq \beta \leq \sigma \leq \alpha - 1$, the positive solution u(x,t) is global solution. Furthermore, an upper bound of the "blow-up time", an upper estimate of the "blow-up rate", and an upper estimate of the global solutions are given.

© 2006 Elsevier Ltd. All rights reserved.

MSC: 35K57; 35K55; 35K10

Keywords: Nonlinear reaction-diffusion equations; Blow-up solutions; Global solutions

1. Introduction

Blow-up solutions and global solutions for nonlinear reaction—diffusion equations reflect instability and stability of heat and mass transport processes respectively. Papers [3,5] dealt with the Cauchy problem:

$$\begin{cases} u_t = \Delta u + (1+u) \ln^{\beta} (1+u), & \text{in } R^N \times (0, T), \\ u(x, 0) = u_0(x) \ge 0, & \text{in } R^N, \end{cases}$$

where $N \ge 1$. Papers [5,6,8] researched the initial and boundary value problem:

$$\begin{cases} u_t = \Delta u + (1+u) \ln^{\beta} (1+u), & \text{in } D \times (0,T), \\ u = 0, & \text{on } \partial D \times (0,T), \\ u(x,0) = u_0(x) \ge 0, & \text{in } \bar{D}, \end{cases}$$

E-mail address: djuntang@sxu.edu.cn (J.T. Ding).

^{*} Corresponding author.

where \bar{D} is closure of D. Papers [2,4,5] and the book [10] discussed the initial and boundary value problem:

$$\begin{cases} u_t = \nabla \cdot \left(\ln^{\sigma} (1+u) \nabla u \right) + (1+u) \ln^{\beta} (1+u), & \text{in } D \times (0, T), \\ u = 0, & \text{on } \partial D \times (0, T), \\ u(x, 0) = u_0(x) \ge 0, & \text{in } \bar{D}, \end{cases}$$

where ∇ is gradient operator. In this paper, we shall study the initial and boundary value problem:

$$\begin{cases} ((1+u)\ln^{\alpha}(1+u))_{t} = \nabla \cdot (\ln^{\sigma}(1+u)\nabla u) + (1+u)\ln^{\beta}(1+u), & \text{in } D \times (0,T), \\ \frac{\partial u}{\partial n} = 0, & \text{on } \partial D \times (0,T), \\ u(x,0) = u_{0}(x) > 0, & \text{in } \bar{D}, \end{cases}$$
(1.1)

where $D \subset R^N$ is a bounded domain with smooth boundary ∂D , $N \geq 2$, $\partial/\partial n$ represents the outward normal derivative on ∂D , $u_0(x)$ satisfies the compatibility conditions and T is the maximum existence time of u(x,t). The nonlinearities of (1.1)(a)–(c) consist of nonlinear reaction, nonlinear diffusion and nonlinear convection, described by $(1+u) \ln^{\beta}(1+u)$, $(1+u) \ln^{\alpha}(1+u)$ and $\ln^{\sigma}(1+u)$, respectively. We wish to know what interactions among the three nonlinear mechanisms result in the blow-up positive solutions and global positive solutions of (1.1)(a)–(c). In the present paper, it is proved that if $\beta - 1 > \sigma > \alpha \geq 0$, the positive solution u(x,t) of (1.1)(a)–(c) blows up globally in \bar{D} , whereas if $0 \leq \beta \leq \sigma \leq \alpha - 1$, the positive solution u(x,t) of u(x,t) of u(x,t) of u(x,t)0 of the global solution. Furthermore, an upper bound of the "blow-up time", an upper estimate of the "blow-up rate", and an upper estimate of the global solutions are given. The upper estimates of blow-up rate are optimal and could lead to stabilization to Hamilton–Jacobi similarity solutions (see [7]). Our approach depends heavily upon constructing auxiliary functions and using maximum principles.

The content of this paper is organized as follows. In Section 2 we shall study the blow-up solutions of (1.1)(a)–(c). In Section 3 we shall research the global solutions of (1.1)(a)–(c).

2. Blow-up solutions

Our main result is the following theorem:

Theorem 1. Let u(x,t) be a $C^3(D\times(0,T))\cap C^2(\bar{D}\times[0,T))$ positive solution of (1.1)(a)–(c). Assume $\beta-1>\sigma>\alpha>0$ and

$$c = \min_{\bar{D}} \left\{ \frac{\ln^{\sigma - \beta - \alpha + 1} (1 + u_0)}{(1 + u_0) [\ln(1 + u_0) + \alpha]} \left[\nabla \cdot \left(\ln^{\sigma} (1 + u_0) \nabla u_0 \right) + (1 + u_0) \ln^{\beta} (1 + u_0) \right] \right\} > 0.$$
 (2.1)

Then u(x, t) blows up globally in \bar{D} and "blow-up time"

$$T \le \frac{\ln^{\sigma - \beta + 1} (1 + M_0)}{c(\beta - \sigma - 1)} \tag{2.2}$$

as well as

$$u(x,t) \le e^{[c(\beta-\sigma-1)(T-t)]^{\frac{1}{\sigma-\beta+1}}} - 1,$$
 (2.3)

where $M_0 = \max_{\bar{D}} u_0(x)$.

Proof. Consider the auxiliary function

$$\Phi = -\ln^{\sigma}(1+u)u_t + c(1+u)\ln^{\beta}(1+u), \tag{2.4}$$

from which we find

$$\nabla \Phi = -\frac{\sigma}{1+u} \ln^{\sigma-1} (1+u) u_t \nabla u - \ln^{\sigma} (1+u) \nabla u_t + \left[c \ln^{\beta} (1+u) + c\beta \ln^{\beta-1} (1+u) \right] \nabla u, \tag{2.5}$$

Download English Version:

https://daneshyari.com/en/article/844432

Download Persian Version:

https://daneshyari.com/article/844432

Daneshyari.com