



Nonlinear

Nonlinear Analysis 65 (2006) 1794-1804

www.elsevier.com/locate/na

Periodic solutions to impulsive differential inclusions with constraints*

Wojciech Kryszewski, Sławomir Plaskacz*

Faculty of Mathematics and Computer Sciences, Nicholas Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

Abstract

The existence of a periodic solution to an impulsive differential inclusion being invariant with respect to a non-convex set of state constraints is established by the use a Lefschetz type fixed-point theorem for set-valued maps.

© 2006 Elsevier Ltd. All rights reserved.

MSC: primary 34A37; secondary 34A60, 34C25, 55M20

Keywords: Periodic solutions; Impulsive differential inclusions; Lefschetz fixed point theorem

1. Introduction

We study the existence of periodic solutions to the following impulsive state constraints problem

$$\begin{cases} u'(t) \in F(t, u(t)) & \text{a.e. } t \in [0, T] \setminus \{t_1, \dots, t_n\}, \\ u(t_k^+) \in \psi_k(u(t_k)) & \text{for any } k \in \{1, \dots, n\}, \\ u(t) \in K & \text{for } t \in [0, T], \\ u(0) = u(T), \end{cases}$$
(1)

E-mail addresses: wkrysz@mat.uni.torun.pl (W. Kryszewski), plaskacz@mat.uni.torun.pl (S. Plaskacz).

[🌣] This work was supported in part by the Faculty of Mathematics and Computer Sciences Research Statute Fund and by the KBN Grant 2 P03A 024 16.

^{*} Corresponding author.

where $K \subset \mathbb{R}^d$ is a strictly regular compact set, $F:[0,T] \times \mathbb{R}^d \to \mathbb{R}^d$ is a set valued map, $0 < t_1 < \cdots < t_n < T$ are the impulse times and $\psi_i : K \to K$ are the impulse maps. The method we use involves results of two types: Lefschetz type fixed-point theorems for set-valued maps (see Theorem 2.13) and a topological characterization of the set of viable solutions to a differential inclusion (see Theorem 3.3). A similar approach has been used to obtain the existence of a periodic viable solution to a constrained differential inclusion (compare [4,19]). We extend this method to systems with impulses. To this aim, we provide a construction of the Lefschetz number for a class of set-valued maps with the so-called *decomposable factorization*. The construction uses a graph approximation theorem (Theorem 2.5).

The problem (1) was studied in e.g. [6,13,22], where the constraining set K was assumed to be compact and convex (see also [3] for some general constructions). The topological tools presented in the second section of the paper allow one to get a much more general result by the use of less technical arguments.

2. Topological setting

By a space we always mean a *metric* space; all single-valued maps between spaces are considered to be continuous. Given a space X with a metric d, a set $A \subset X$ and $\varepsilon > 0$, $B(A,\varepsilon) := \{x \in X \mid d_A(x) := \inf_{a \in A} d(x,a) < \varepsilon\}$ denotes the (open) ε -neighborhood of A. Recall that a space X is an ANR (absolute neighborhood retract) (we also write $X \in ANR$) if, given a space Y and a homeomorphic embedding $i: X \to Y$ of X onto a closed subset $i(X) \subset Y$, i(X) is a neighborhood retract of Y, i.e. there is an open neighborhood U of i(X) in Y and a retraction $f: U \to i(X)$.

It is well-known that the class of ANR behaves well concerning the fixed-point theory. The following result will be of crucial importance for our reason.

Theorem 2.1 (Comp. [21,5]). If X is a compact ANR, $f: X \to X$ is a map, and the Lefschetz number $\lambda(f) \neq 0$, then f has a fixed point. \square

In order to understand this result, recall that any compact ANR is homotopy dominated by (or even, in view of the celebrated theorem of West, homotopy equivalent to) a compact (hence finite) polyhedron (see [5, Th. III.B.1]). Therefore, if $H_*(\cdot;\mathbb{Q})$ denotes any (for example, singular) ordinary homology functor with rational coefficients, then the (graded) vector space $H_*(X;\mathbb{Q})$ is of finite type, i.e. for each $q \geq 0$, the *Betti number* $\beta_q(X) := \dim_{\mathbb{Q}} H_q(X;\mathbb{Q}) < \infty$ and, for almost all $q \geq 0$, $\beta_q(X) = 0$ (comp. [5, Cor. III.B.2]). In particular, for each $q \geq 0$, the trace tr f_{*q} of the endomorphism $f_{*q}: H_q(X;\mathbb{Q}) \to H_q(X;\mathbb{Q})$ induced by f is a well-defined rational number and, for almost all $q \geq 0$, tr $f_{*q} = 0$. Hence the *Lefschetz number*

$$\lambda(f) := \sum_{q>0} (-1)^q \operatorname{tr} f_{*q}$$

is well-defined. Similar arguments show that the Euler characteristic

$$\chi(X) := \sum_{q>0} (-1)^q \beta_q(X),$$

¹ The class of strictly regular sets will be described below; in particular, any compact convex set, as well as compact epi-Lipschitz set, is strictly regular.

² Usually, by an impulse map one understands a map of the form $\psi_i - i d_K$.

³ A map $r: U \to i(X)$ is a *retraction* provided that r(y) = y for $y \in i(X)$.

Download English Version:

https://daneshyari.com/en/article/844668

Download Persian Version:

https://daneshyari.com/article/844668

Daneshyari.com