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Abstract

Iteratively regularized fixed-point iteration scheme
Xp1 =Xn — 0 {F (xn) — f5 + &n(xn — x0)}
combined with the generalized discrepancy principle
IFGen) = fI1P<T0 < IFGn) = fol?, 0<n<N, ©>1,

for solving nonlinear operator equation F'(x) = f in a Hilbert space is studied in the paper. It is shown
that if F is monotone and Lipschitz-continuous the sequence {N (0)} is admissible, i.e.

li 5 —x*|| =0, 1
lim, lxn ) — X" (D

where x* is a solution to F(x) = f.
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1. Introduction

Let us consider a nonlinear operator equation
F(x)=f, F:H— H, (1.1)

in a real Hilbert space H (Eq. (1.1) in a complex Hilbert space can be treated similarly).
According to [6, p. 100] problem (1.1) is solvable if the operator F is monotone, hemicon-
tinuous and || F (x)|| — oo as ||x|| — oo. If, in addition to that, F is strongly monotone and
Lipschitz-continuous then a solution to (1.1) is unique, and it can be calculated numerically
by a fixed-point iteration scheme:

Xpp1 =Xp —U(F(xy) = f), xo0€H, (1.2)

with the appropriate choice of the parameter «. For a wide class of inverse problems in form
(1.1) the operator F is not strongly monotone. In that case an iteratively regularized version
of method (1.2) was proposed in [3]

Xpp1 = Xp — 0 {F (xp) — f + &, (xn — X0)}. (1.3)

It was shown in [3] that if (1.1) is solvable (not necessarily uniquely), F' is monotone and
Lipschitz-continuous then one can choose sequences {o, } and {¢, } to guarantee convergence
of regularized iterations (1.3) to the xp-normal solution of (1.1), i.e. the solution nearest to
X in the norm of H. Suppose now that the exact right-hand side f € H in (1.1) is given
by its d-approximation:

If = fsll<o. (1.4)

If fs does not belong to the range of F then iterates x, in (1.3) can diverge, but still
allow a stable approximation of the solution provided that the process is stopped after an
appropriate number of steps N = N (J). In this paper we suggest to choose N (J) according
to the following generalized discrepancy principle [4]:

IFCen) = f5ll<wo < | FGan) = f31° 0<n <N, t>1, (1.5)
and analyze the convergence of iteratively regularized fixed-point iterations
Xn1 = Xp — 0n{F (Xn) — f5 + &n(xn — Xx0)} (1.6)

under the following basic assumptions:

Condition A. Problem (1.1)issolvablein H (not necessarily uniquely) and x* is a solution.
The right-hand side of (1.1) is known approximately and inequality (1.4) holds.

Condition B. The operator F is monotone in H
(F(hy) — F(hp),hy —hy)>0 forall hy,hy € H, 1.7)
and Lipschitz-continuous:

I1F(g1) — F(g)I<Llg1 — g2l forany g1,82 € H. (1.8)
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