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Abstract

Generalized Hyers–Ulam stability problems of the quadratic functional equation
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shall be treated under the approximately even (or odd) condition, and some behaviors of quadratic
mappings and additive mappings shall be investigated.
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1. Introduction

In 1940, Ulam proposed the stability problem (see [12]):

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given � > 0,
does there exist a � > 0 such that if a function h : G1 → G2 satisfies the inequality
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d(h(xy), h(x)h(y)) < � for all x, y ∈ G1, then there exists a homomorphism H :
G1 → G2 with d(h(x), H(x)) < � for all x ∈ G1?

In 1941, this problem was solved by Hyers [4] in the case of Banach space. Thereafter,
we call that type the Hyers–Ulam stability. In 1978 Rassias [10] extended the Hyers–Ulam
stability by considering variables instead of the constants � and �. It also has been generalized
to the function case by Găvruta [3].

Let X and Y be a real normed space and a Banach space, respectively.

Definition. A mapping f : X → Y is called additive (respectively, quadratic) if it satisfies
the equation

f (x + y) = f (x) + f (y)

(respectively, f (x + y) + f (x − y) = 2f (x) + 2f (y)) for all x, y ∈ X.

For a mapping f : X → Y , consider the following functional equations:

f (x + y + z) + f (x) + f (y) + f (z) = f (x + y) + f (x + z) + f (y + z) (1)

and

f (x + y + z + w) + f (x) + f (y) + f (z) + f (w)

= f (x + y) + f (x + z) + f (x + w) + f (y + z) + f (y + w) + f (z + w) (2)

for all x, y, z, w ∈ X.
The functional equation (1) was solved by Kannappan [7]. In fact, he proved that a

functional on a real vector space is a solution of Eq. (1) if and only if there exist a symmetric
biadditive function B and an additive function A such that f (x) = B(x, x) + A(x) for any
x ∈ X. Recently Chang, et al. [1] investigated the generalized Hyers–Ulam–Rassias stability
of Eq. (2). For n�3, consider the following functional equation
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for all x1, . . . , xn ∈ X. In this paper, the Hyers–Ulam stability of Eq. (3) shall be proved
under the approximately even (or odd) condition.

2. Approximately even case

From now on, let R+ denote the set of all nonnegative real numbers.
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