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The advent of single-cell transcriptomics has led to the proposal of a number of novel high-
resolution models for the hematopoietic system. Testing the predictions generated by such models
requires cell fate potential assays of matching, single-cell resolution. Here we detail the devel-
opment of an in vitro high-throughput single-cell culture assay using flow cytometrically sorted
single murine bone marrow progenitors, which measures their differentiation into any of five
myeloid lineages. We identify critical parameters for single-cell culture outcome, including the
choice of sorter nozzle size and pressure, culture media, and the coating of culture dishes with
extracellular matrix proteins. Further, we find that accurate assay readout requires the titra-
tion of antibodies specifically for their use under low-cell-number conditions. Our approach
may be used as a template for the development of single-cell fate potential assays for a variety
of blood cell progenitors. © 2018 ISEH – Society for Hematology and Stem Cells. Published
by Elsevier Inc. All rights reserved.

Recent single-cell transcriptomic studies have led to the pro-
posal of new models for the hematopoietic hierarchy [1–10].
Testing these models requires matching cell transcriptional
state with functional cell fate potential at the single-cell level.
Older studies have reported “low-throughput” single-cell dif-
ferentiation assays in vitro, where outcome is measured using
colony formation and morphological criteria [11–13]. Re-
cently, tracking of single hematopoietic stem cell differentiation
by in vitro imaging has also been described [14,15], and index
sorting was used to link single-cell transcriptomics with single-
cell fate potential assays including single-cell transplantation
[16,17]. Single-cell cultures using human progenitors have
been reported [7]. However, the influence of various assay
parameters on assay efficiency and outcome have not been

detailed. To our knowledge, no high-throughput assays have
been developed for primary murine progenitors.

Ultimately, cell fate potential in vivo would be the most
definitive and relevant measure. Indeed, in vivo clonal studies
with single transplantable hematopoietic stem cells have es-
tablished their heterogeneity [18]. However, transplantation
assays that test single-cell fate potential in vivo are cur-
rently limited to cells with substantial proliferative output.
Single-cell in vitro cultures, although unlikely to recreate in
vivo conditions, provide a flexible setting in which to ma-
nipulate extracellular conditions and measure their effects on
fate outcomes. Further, they can be scaled up for analysis of
thousands of individual cells with relative ease.

Below we describe the development of a single-cell culture
assay for murine hematopoietic progenitor cells (HPCs). We
examined the effects of a number of key parameters during
flow cytometric cell sorting, cell culture, and flow cytometric
readout of differentiation outcome (Fig. 1). Although we
provide a set of conditions that successfully promote differ-
entiation of murine HPCs into five cell fates, what follows
is also a template that can be adapted for the detection of other
differentiation outcomes from narrower or broader sets of
progenitors.
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Methods

Mice
Bone marrow (BM) was harvested from 8- to 12-week-old adult
BALB/cJ male or female mice (Jackson Laboratory, Bar Harbor,
ME).

Cell preparation
Femurs and tibias were harvested immediately following euthana-
sia and placed in cold (4°C) “staining buffer” (phosphate-buffered
saline [PBS] containing 0.2% bovine serum albumin [BSA] and
0.08% glucose). Bones were flushed using a 2-mL syringe with a
26-gauge needle and then crushed with a pestle and mortar to obtain
any remaining cells. Flushing the bones is gentler than crushing,
promoting cell viability; however, cell yield is lower, and some cell
types may be protected from flushing in bone niches that are less
accessible to flushing. For this reason, we first flush the bones, ob-
taining as many cells as possible, and then crush the bones to obtain
any remaining cells. Harvested bone marrow cells were filtered
through a 70-µm strainer and washed in cold Easy Sep buffer (PBS,
2% fetal bovine serum [FBS], 1 mmol/L EDTA).

Harvested BM cells were lineage-depleted using the Mouse
Streptavidin RapidSpheres Isolation Kit (STEMCELL Technolo-
gies, Catalog No. 19860A), with the following biotinylated antibodies
(with catalog numbers in square brackets):

• Anti-CD11b: Clone M1/70 [557395], BD Biosciences
• Anti-Ly-6G and Ly-6C: Clone RB6-8C5 [553125], BD Biosciences
• Anti-CD4: Clone RM4-5 [553045], BD Biosciences
• Anti-CD8a (Ly-2): Clone 53-6.7 [553029], BD Biosciences

• Anti-CD19: Clone 1D3 [553784], BD Biosciences
• Anti-TER119: Clone TER119 [553672], BD Biosciences

Single-cell liquid cultures of mouse BM progenitors
Lineage-depleted cells were then labeled with the following anti-
bodies in the presence of 1% rat serum:

• Streptavidin Alexa Fluor 488: Molecular Probes, to mark lineage-
positive cells

• CD117-APC Cy7: Clone 2B8 [105826], Biolegend
• TER119-BUV395: Clone TER-119 [563827], BD Biosciences
• CD71- PE Cy7: Clone RI7217 [113812], Biolegend
• CD55-AF647: Clone RIKO-3 [131806], Biolegend
• CD105-PE: Clone MJ7/18 [#120408], Biolegend
• CD150-BV650: Clone TC15-12F12.2 [115931], Biolegend
• CD41-BV605: Clone MWReg30 [133921], Biolegend
• CD49f (=itga6) – BV421: Clone GoH3 [313624], Biolegend

Following washes, cells were resuspended in 4′, 6-diamidino-
2-phenylindole (DAPI)-containing buffer, and single cells were sorted
from each of these gates into 96-well plates, retaining index-
sorting parameter for each cell, using a BD FACSAria II with a 130-
µm nozzle. Cells were cultured for 3 to 10 days in Iscove’s modified
Dulbecco’s medium (IMDM) + 20% fetal bovine serum (FBS), with
the following added growth factors:

• Stem cell factor (SCF, 50 ng/mL): Recombinant Murine SCF [250-
03], Peprotech

• Interleukin (IL)-3 (10 ng/mL): Recombinant Murine IL-3 [213-
13], Peprotech

• IL-6 (10 ng/mL): Recombinant Murine IL-6 [216-16], Peprotech
• Erythropoietin (EPO, 2 U/mL): PROCRIT (epoetin alfa)

[606-10-971-8]
• IL-11 (50 ng/mL): Recombinant Murine IL-11 [11], Peprotech
• IL-5 (10 ng/mL): Recombinant Murine IL-5 [215-15], Peprotech
• Thrombopoietin (TPO, 50 ng/mL): Recombinant Murine TPO [14],

Peprotech
• Granulocyte colony-stimulating factor (G-CSF, 15 ng/mL): Re-

combinant Murine G-CSF [250-05], Peprotech
• Granulocyte–macrophage CSF (GM-CSF, 15 ng/mL): Recombi-

nant Murine GM-CSF [315-03], Peprotech

Fresh growth factors were added to the medium of each well
on days 4 and 8. The clones in each well were labeled on day 3, 7,
or 10 with the following cell surface markers for flow cytometric
analysis:

• TER119-BV421: Clone TER-119 [116233], Biolegend
• CD71-PE Cy7: Clone RI7217 [113812], Biolegend
• CD117-APC Cy7: Clone 2B8 [105826], Biolegend
• FcεRIα-AF700: Clone MAR-1 [134323], Biolegend
• CD41-BV605: Clone MWReg30 [133921], Biolegend
• Cd11b-PE Cy5: Clone M1/70 [101209], Biolegend
• Ly 6G/C-FITC: Clone RB6-8C5 [553126], BD Biosciences

The concentration for each antibody batch was first optimized
with appropriate titrations, to minimize nonspecific binding under
conditions of low cell number. Clones were analyzed using the high-
throughput sampler (HTS) attachment of the BD LSR II.

Figure 1. Optimization of a single-cell culture assay for murine hemato-
poietic progenitors. A cartoon depicting the parameters optimized in the
development of the single-cell culture assay: 1 = culture medium, culture
well shape, and coating; 2 = sort pressure and nozzle size; 3 = culture pa-
rameters including medium, culture duration, and growth factor refeeding;
4 = antibody binding assay, optimizing antibody concentrations under low-
cell-number conditions.
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