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Inherited bone marrow failure syndromes (IBMFS) represent a heterogeneous group of mul-
tisystem disorders that typically present with cytopenia in early childhood. Efforts to understand
the underlying hematopoietic stem cell (HSC) losses have generally focused on postnatal he-
matopoiesis. However, reflecting the role of many of the involved genes in core cellular functions
and the diverse nonhematologic abnormalities seen in patients at birth, studies have begun to
explore IBMFS manifestations during fetal development. Here, I consider the current evi-
dence for fetal deficits in the HSC pool and highlight emerging concepts regarding the origins
and unique pathophysiology of hematopoietic failure in IBMFS. © 2017 ISEH – Society for
Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

Inherited bone marrow failure syndromes (IBMFSs) are mul-
tisystem disorders with a predilection for exhaustion of the
hematopoietic stem cell (HSC) pool as a near-uniform feature
[1,2]. In most patients, symptomatic cytopenias do not man-
ifest until early childhood, but cases of fetal anemia leading
to intrauterine hydrops have been reported. Some infants come
to attention with constitutional anomalies in other organ
systems or through the diagnosis of symptomatic siblings.
These seemingly disparate observations are consistent with
prenatal HSC defects, even though until recently, few studies
had directly pursued this possibility [3,4]. Conversely, many
IBMFSs have revealed genetic defects in core cellular func-
tions that can plausibly have an impact on HSC emergence,
expansion, or transition between embryonic sites of hema-
topoiesis. Given the ethical challenges in studying development
in humans, the generation of IBMFS model systems has been
critical, with mouse and zebrafish models, as well as induced
pluripotent stem cells (iPSCs), all providing unique value
(Fig. 1).

This article considers the existing evidence for develop-
mental abnormalities in IBMFS hematopoiesis, with emphasis
on Fanconi anemia (FA) and Diamond–Blackfan anemia

(DBA), as prototypical IBMFSs, along with references to
Shwachman–Diamond syndrome (SDS) and the telomere
biology disorders (TBDs) where appropriate. Beyond the
narrow focus of this article, I highly recommend several
excellent reviews discussing IBMFS demographics, patho-
physiology, and genetics more broadly [1,5–8].

Hematopoietic manifestations of IBMFSs
during development
Given the role of IBMFS genes in core cellular functions,
such as DNA repair (FA), ribosome assembly (DBA), and
telomere maintenance (TBD) (Table 1), one might reason-
ably argue that fetal development, with its reliance on highly
orchestrated gene expression programs and rapid rates of cell
proliferation, is particularly vulnerable to disruption. This
notion is consistent with experimental observations. For
example, the selective deficiency of ribosomal protein 38
(Rpl38) leads to tissue-specific defects in patterning and organ
formation, and investigators observe embryonic lethality after
combined loss of aldehyde metabolism and Fancd2 func-
tion [11,35]. These pathways also prove central in maintaining
regenerative HSC reserve, which is highly susceptible to altered
protein synthesis via changes in ribosome stoichiometry or
loss of DNA repair integrity, in DBA and FA, respectively
[36,37].
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Clinically, case reports in FA report neonatal cytopenias
and reduced cord blood progenitor colony formation [38–40].
Similarly, several instances of fetal anemia in DBA have been
reported [41,42]. The pre- or perinatal onset of HSC loss in
FA is further supported by the profound CD34+ progenitor
deficits in very young patients prior to the onset of severe
pancytopenia, as well as observations in human FA fetal liver
samples [43,44]. Experimentally, recent studies in several
murine models of FA (Fanc-c, -d2, and -g) revealed losses
and functional defects in immunophenotypically defined HSCs
from embryonic day (E) 14.5 fetal livers [9,10,17,21]. A mouse
model, with transgenic expression of the short form of Gata1,
a rare variant of DBA, also exhibited significant deficits in
erythroid differentiation, compromised fetal liver progeni-
tor colony formation, and early postnatal anemia [45]. Several
reports of zebrafish models have linked developmental he-
matopoietic defects to specific ribosomal protein deficiencies
[25,26,46–49]. Finally, studies in embryonic stem cells (ESCs)
and patient-derived iPSCs with mutations in FA and DBA
genes recapitulate defects in early hematopoietic commit-
ment and specification [12,24,50–53]. Therefore, both clinical
observations and experimental data consistently support the
developmental onset of hematopoietic failure in several
IBMFSs [2,39,40,54].

Available models for the study developmental
hematopoiesis in IBMFSs
With the study of human fetal hematopoiesis facing obvious
ethical limits, mouse and zebrafish models and patient-
derived iPSCs each bring specific strengths to the study of
embryonic pathophysiology in IBMFSs (Table 1).

Murine hematopoiesis closely resembles the hierarchical
organization in human hematopoiesis, and these models have

been invaluable, and arguably imperfect, tools in understand-
ing HSC defects in FA and DBA, but also SDS and TBD
[23,55–57]. For example, although the spatial emergence of
hematopoiesis in the yolk sac and aorto-gonado-mesonephros
(AGM) region seems largely conserved between species, dif-
ferences in HSC number, cycling activity, clonal dynamics,
and telomere regulation have been noted. Compelling insight
into other aspects of HSC biology in mice awaits correla-
tion in humans, such as a more refined immunophenotypic
definition of HSC or the aging phenotype, as reviewed by
Sykes and Scadden [57]. Similarly, there are strong paral-
lels, but also significant gaps in understanding of fetal HSC
microenvironments (i.e., AGM, fetal liver, and bone marrow)
that may prove important when considering the possibility
of non-cell autonomous defects during IBMFS blood devel-
opment [56,58–61]. Manipulation of the murine germline,
breeding, and backcrossing into the desired strain can prove
costly, time consuming, and complicated. Moreover, mod-
eling some mutations, such as the haploinsufficiency
underlying many ribosome disorders, will require tissue-
specific strategies with improved control over temporal and
gene dosage regulation [23,27].

Pluripotent stem cells (PSCs) predominantly recapitu-
late primitive hematopoiesis, but can be induced by canonical
Wnt signals to provide definitive hematopoietic output [62].
Validated protocols allow the reprogramming of somatic cells
to pluripotency and provide economy in modeling patient-
specific mutations with the ability to perform pharmacological
screens [12,63–65]. A novel hybrid approach to xenografting
iPSC-derived HSPCs into immunodeficient animals may allow
in vivo drug screening of human cells [66]. However, the re-
programming process in dyskeratosis congenita (DKC), FA
and DBA has not always been straightforward, occasionally
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Figure 1. Modeling fetal hematopoietic development. AGM = aorto-gonado-mesonephros region; ESC = embryonic stem cell; iPSC = induced pluripotent
stem cell; ME = microenvironment.
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