

### **Biophysical analysis of a lethal laminin** alpha-1 mutation reveals altered self-interaction

### Trushar R. Patel<sup>a, b†</sup>, Denise Nikodemus<sup>c,†</sup>, Tabot M.D. Besong<sup>d, e</sup>, Raphael Reuten<sup>c</sup>, Markus Meier<sup>a</sup>, Stephen E. Harding<sup>d</sup>, Donald J. Winzor<sup>f</sup>, Manuel Koch<sup>b</sup> and Jörg Stetefeld<sup>a,</sup>

a - Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada

b - School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

c - Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, Medical Faculty,

University of Cologne, Cologne 50931, Germany

d - National Center for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom

e - Functional Nanomaterials Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

f - School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia

Correspondence to Trushar R. Patel and Jörg Stetefeld: T. R. Patel, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. J. Stetefeld, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada. t.r.patel@bham.ac.uk; jorg.stetefeld@ad.umanitoba.ca http://dx.doi.org/10.1016/j.matbio.2015.06.005

Edited by R. lozzo

#### Abstract

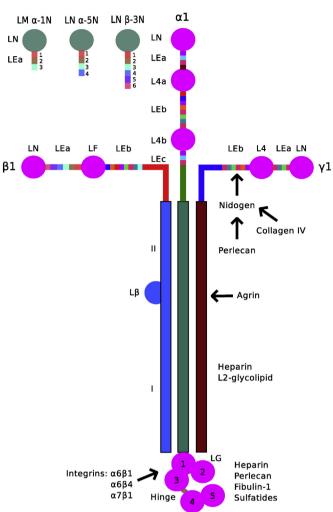
Laminins are key basement membrane molecules that influence several biological activities and are linked to a number of diseases. They are secreted as heterotrimeric proteins consisting of one  $\alpha$ , one  $\beta$ , and one  $\gamma$ chain, followed by their assembly into a polymer-like sheet at the basement membrane. Using sedimentation velocity, dynamic light scattering, and surface plasmon resonance experiments, we studied self-association of three laminin (LM) N-terminal fragments  $\alpha$ -1 (hLM  $\alpha$ -1 N),  $\alpha$ -5 (hLM  $\alpha$ -5 N) and  $\beta$ -3 (hLM  $\beta$ -3 N) originating from the short arms of the human laminin αβy heterotrimer. Corresponding studies of the hLM α-1 N C49S mutant, equivalent to the larval lethal C56S mutant in zebrafish, have shown that this mutation causes enhanced self-association behavior, an observation that provides a plausible explanation for the inability of laminin bearing this mutation to fulfill functional roles in vivo, and hence for the deleterious pathological consequences of the mutation on lens function.

© 2015 Elsevier B.V. All rights reserved.

#### Introduction

Laminins (LM) are highly glycosylated basement membrane proteins built from one  $\alpha$ , one  $\beta$  and one  $\gamma$ chain that are linked covalently by disulfide bonds between coiled-coil domains [2,8,28] and assemble into 18 isoforms [10,17]. Each subunit comes in a variety of states; there are five isoforms for  $\alpha$ (denoted  $\alpha 1$  to  $\alpha 5$ ), three different types for  $\beta$  ( $\beta 1$ to  $\beta$ 3) and three variants for  $\gamma$  ( $\gamma$ 1 to  $\gamma$ 3) [36]. A common feature of the three types of laminin chains is the presence of an N-terminal short arm containing two globular domains (domains LN (formerly VI) and L4a/LF/L4 (formerly IV)), followed by a series of laminin-type epidermal growth factor-like domains

[3] — as represented schematically in Fig. 1. Exceptions are the laminin  $\alpha 4$  and a spliced version of laminin a3 (a3A) that lack the N-terminal short arm [36]. The N-terminal short arms merge into the laminin long arm, a three-stranded left-handed coiled coil. The  $\alpha$  laminin chain continues in a tandem array of five laminin globular (LG) domains after the coil [7]. Basement membrane assembly begins with the polymerization of laminin into a cell-associated network [58]. A key step in this process that is mediated by the N-terminal domains of the three short chains of the laminin  $\alpha\beta\gamma$ heterotrimer has been described as the "three arms interaction model" [17]. The current work focuses on two truncated forms of the N-terminal


0022-2836/C 2015 Elsevier B.V. All rights reserved.

Matrix Biol. (2015) xx, xxx-xxx

Article

Please cite this article as: T. R. Patel, et al., Biophysical analysis of a lethal laminin alpha-1 mutation reveals altered self-interaction, Matrix Biol (2015), http://dx.doi.org/10.1016/j.matbio.2015.06.005

## **ARTICLE IN PRESS**



Biophysical analysis of a lethal laminin alpha-1 mutation reveals altered self-interaction

Fig. 1. Schematic representation of the human  $\alpha\beta\gamma$  heterotrimer showing the location of the three short-arm segments (LM  $\alpha$ -1 N, LM  $\alpha$ -5 N and LM  $\beta$ -3 N) being investigated.

region of the LM  $\alpha$ -short arm, designated LM  $\alpha$ -1 N and LM  $\alpha$ -5 N, that comprise the globular LN domain and three ( $\alpha$ -1) or four ( $\alpha$ -5) LEa domains, and also on a corresponding segment of the LM  $\beta$ -short arm, (designated LM  $\beta$ -3 N), that includes the globular LN domain and six LEa domains. Their location within the laminin  $\alpha\beta\gamma$ -heterotrimer is indicated in Fig. 1.

Interest in LM  $\alpha$ -1 stems from its involvement in a number of physiological and pathological processes [10]. Ning et al. [38] demonstrated that the absence of LM  $\alpha$ -1 results in increased proliferation of mesangial cells in the kidney and increased TGF- $\beta$ 1 mediated Smad2 phosphorylation. LM  $\alpha$ -1 is required for the development and organization of the cerebellum and for the migration of granular cells [16,21]. An ablation of LM  $\alpha$ -1, which is an essential component of laminin-111 heterotrimer that forms a highly specialized and thick extra-embryonic Reichert's membrane is embryonic lethal [35]. The subunit also regulates neuronal polarity and directional guidance [56], and is required for lens development in zebrafish [60]. A mutation in C56 to serine of LM  $\alpha$ -1 N in zebrafish leads to defects with the development of lens, cornea, and retina resulting in lens degeneration and focal cornea dysplasia — a mutation also causes death of larvae by 12 days [50]. This cysteine and other cysteine residues are conserved across species as signified by sequence alignment (Supplementary Fig. 1).

LM  $\alpha$ -5 influences several biological processes including tissue patterning, organogenesis and embryogenesis, and its absence has been linked to limb defects in mouse [52]. Recently, its role in mouse placental labyrinth development and formation has been demonstrated [25]. It is also crucial for the establishment and maintenance of the glomerular filtration barrier in murine kidneys [15,34], as well as for murine lung development [37]. Overexpression of LM  $\beta$ -3 in colorectal cancer has been linked with chemoresistance of cancer patients [12].

2

Download English Version:

# https://daneshyari.com/en/article/8455174

Download Persian Version:

https://daneshyari.com/article/8455174

Daneshyari.com