

Structure, evolution and expression of collagen XXVIII: Lessons from the zebrafish

Jan M. Gebauer^{1,†}, Birgit Kobbe², Mats Paulsson^{1,2,3} and Raimund Wagener^{1,2}

1 - Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany

2 - Center for Molecular Medicine, University of Cologne, D-50931 Cologne, Germany

3 - Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany

Correspondence to Raimund Wagener: Institute for Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany. [†] Current address: Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany. *raimund.wagener@uni-koeln.de* http://dx.doi.org/10.1016/j.matbio.2015.07.001 *Edited by R. lozzo*

Abstract

Collagen XXVIII is the last discovered member of the collagen superfamily and thus has been only sparsely investigated. We studied collagen XXVIII in zebrafish to gain insight into its structure, evolution and expression. In contrast to human and mouse, the zebrafish genome contains four collagen XXVIII genes, *col28a1a* and *-b*, and *col28a2a* and *-b*. Genomic context and phylogenetic analysis revealed that the *a2* branch was lost during evolution of mammals, whereas the duplication of the *a1* and *a2* branches results from the whole genome duplication in the teleost lineage. Sequence analysis revealed conservation of domain structure and the unique imperfections in the triple helical domain. Two major forms of collagen XXVIII were identified, Col28a1b in adult and Col28a2a in 3–5 dpf zebrafish. Composite agarose/polyacrylamide gel electrophoresis revealed that both these chains mainly form dimers of trimers, although Col28a1b appears to be more polydisperse. Homodimers are abundant, although it is possible that complexes consisting of Col28a2a and Col28a1a or -a2b occur. Peptide mass fingerprint analysis revealed that the C-terminal Kunitz domain is often proteolytically processed. In contrast to murine collagen XXVIII, the zebrafish orthologs are widely expressed and not only present in the nervous system. They are differentially expressed in the liver, thymus, muscle, intestine and skin. Altogether our results point to a unique nature of collagen XXVIII within the collagen family.

© 2015 Elsevier B.V. All rights reserved.

Introduction

The collagen superfamily is a heterogeneous group of proteins with many *in vivo* functions. Its members play important roles in tissue formation, stability and maintenance (*e.g.* cell adhesion, migration, differentiation, and wound healing), for review see [1]. To date 28 different collagens are known which are encoded by 46 different genes. The protein family can be subdivided into fibril, beaded filament, anchoring fibril, and network forming collagens. Structurally, collagens are defined by their Gly-X-Y repeats where X and Y are often a proline or hydroxyproline residue leading to the formation of left-handed polyproline II helices that assemble into twisted, tightly packed right-handed triple helices. However, many collagens also contain noncollagenous domains and depending on the individual domain structure they can form very different supramolecular assemblies.

Information about collagen XXVIII is sparse, knockout or knockdown models are not available and it is not clear if this collagen belongs to one of the four collagen subgroups or if it is unique. The human and murine proteins consist of an N-terminal VWA (von Willebrand factor type A) domain followed by a 528 amino acid residue collagenous domain, which has altogether 16 uniformly arranged, very short imperfections (G1G and G4G) in the Gly-X-Y repeat, unique among the known collagens [2]. The C-terminus is made up by a second VWA domain followed by a unique domain and a domain related to the BPTI/Kunitz family of serine protease inhibitors

0022-2836/© 2015 Elsevier B.V. All rights reserved.

Matrix Biol. (2015) xx, xxx-xxx

Please cite this article as: J. M. Gebauer, et al., Structure, evolution and expression of collagen XXVIII: Lessons from the zebrafish, Matrix Biol (2015), http://dx.doi.org/10.1016/j.matbio.2015.07.001

ARTICLE IN PRESS

Zebrafish collagen XXVIII

za2a za2b za1a za1b ma1	1 MAVMAHSLSWCVICLGLISVCACDFYEERTGPTRVKTRGPTASNIOKHNGDAILDEDCSLEI 1 ~MMLRLCVRWLVILSAAQIVLACKDFDDEDEDPEDFVEDNRNGRRKSK.DITSNVIPKNKDENONLEI 1 ~~~~~~~~VQCGAVMLCLLLIICCSARSONRRKNRQKPDNNVNTNGVKTLFOPVEI 1 ~~~~~~~MNESVLLVCVSEWLLVSAARCONBROSGETP.NNLTTKCDNACSLE 1 ~~~~~~~MNESVLLVCVSEWLLVSAARCONBROSGETP.NNLTTKCDNACSLE 1 ~~~~~~~MNESVLLVCVSEWLLVSAARCONBROSGETP.NNLTTKCDNACSLE	AFLVDSSEKAT, MLFEROREFVLREST
za2a za2b za1a za1b ma1	89 GLOSTRIDTGRKISWRAALLQYSSHVIIEOTIKONKGTENEKSSIAPMAYIGHGTYTTYAIINMTKIEVEES 94 HIPNIRIOLGOGUNERTALLQYSSHVITEGSEKDNEGVESGOSRWASIPHIGHGTYTTYAIINITRIYLEES 76 RLTOMQV.PGWRMRVRLAVLQYSSTVSIEHNERDWODIDVEOSRVDSMTYIGHGTYSAYAISNATOLETQET 74 RLMEMQV.GGWHLRTRLALLYYSSSVHINGHENDMODIDVELDQEDASYIGOGTYSTYAISNATOLETREIS 77 KIFQLTPGRSLKYDIKLAALQYSSSVQIDPPLSSMKDIRTEKORVKSINLGGGTSTYAISNATOLETREIS	SPGTVKVAILMYGGASHPKNPDIFSALA PTSFRAALLLTDGDDHPRSPSAVTAAS
za2a za2b za1a za1b ma1	189 DAKNOGVKVETIGITRTANDPVNAANLRLLSSTPASRELYNLODTNVMEKVITOLAOLANDGCPLSOKCVCEK 194 DAKNOGIKEFIVGLTSAANMEKLOLLASAPASRYVHNLODKGVVDKLIREITKVVDEVCPFSPKCTCEK 175 DAKIHDIEVFVIGIPGSSRBEODVERLRSIASAPPOVLFSITDPOLDKIFREISELANRACPOPKSCICEK 173 BAKSHNIKIFAIGLSMRAMDSNS.AKLRAVASSPAOVFHSLTDRGLEERLLOOIETTAKODOPRPLVCICOK 174 DARILGISFITVGLSTVVNEAKLRLISGDESNEPVLLLSDPTLVDRIOERLGVIFERKCEH.KICECK	KGERGPSGPAGKKGRPGEDGTPGAKGOK KGDRGPSGPAGKKGRPGDDGSPGPKGOK KGERGLPGNPGKVGDAGFDGPPGPKSSR KGDQGLPGAPGRKGDQGYDGAPGAKCSR KGEPGDPGPPGTHGNPGIKGERGPKGNP
za2a za2b za1a za1b ma1	289 GEACLSGLPGREGTEGKPGYKGE0GERGECGTPGIKGDRGPEGFVGT0GSRGL0GLPGP0GDIGPEGA0GKK0 290 GEGSSGAPGRDGTEGKTGYKGEKGERGECGTPGVKGDRGPEGPVGIRGSRGL0GLPGPNGDVGPEGLPGKK0 275 G2PGLNGRPCLEGTRGRPCLKGEKGGKGECGASGIKGD0GPDGSPGPRGPKGKGITGNPGDTGPEGPVGSK0 272 GETGAPGLPGINGPEGRPFKGDKGL0GNCGPPG0KGYKCTEGPPGPRGPQGLKGSPGD0GSEG0PGPK0 273 GALQKGETGERGPVGIPGYKGDKGERGECGKPGVKGDKGPEGPYGPKGPRGL0GIGGPPGPKGFQGNKG 274 GALQKGETGERGPVGIPGYKGDKGERGECGKPGVKGDKGPEGPYGPKGPRGL0GIGGPPGPKGFQGNKG	GERGP <mark>SGPTG</mark> PPGDP <mark>GVGFPGA</mark> KGEKGS GDRGPTGASGLPGDIGVGFPGPKGVKGN
za2a za2b za1a za1b ma1	389 QGRPGPPGPIGIGEPGLPGPQGPQGVQGEKGPQGPGGPGFGPGPKGDRGLEGPKGPRGQEGLGIKGDKGFGPGLF 390 QGRMGPPGLFGLGEPGLPGPQGPQGSPGEKGPFGPGFGPGPGRGERGLEGPRGPRGPAGTAIKGDKGDFGSPGLF 375 QGRPGTGPVGIGEPGPGCPGCQCVQGNQGFPGFGLPGPKGDRGFAGFGVQRGPFGSSIKGDKGNTGERGLF 372 PGRACPIGVGIGPGLPGPGLQCIQGNPGAPGPCLPGPKGDRGFAGFTGRGPFGYSVKGAKGDAGPPGSE 371 EGRMGAPGPIGIGEPGQPGPGPEGAPGERGLPGEGFFGFGFGSEGFGQGLGCISIKGDKGDLGPVGPC 372 COLLAGERGEGPGGPGFGEGAPGERGFGGCLPGCGFGFGFGFGGFGGGGGGGGGGGGGGGGGGGG	?CLVGFECAGIQCEKGDLGPIGPPGPRG ?CPLGMEGRGIQGEKGNQGPVGPPGQRG JGPAGIEGIGSQGEQGIQGPSGPPGPQG
za2a za2b za1a za1b ma1	489 PPGE GRAGPKGEQGLPGEMGTPGERGQGEPGAKGEPGSSGLAGVPGLPGEDGAPGOKGEPGIPGFRGPEGAQ 490 PPGESYPGPKGDQGLPGESGAPGERGAGEPGAKGEPGAPGLSGLPGLPGEDGAPGOKGEPGATGLRGAPGAA 475 PPGVGLVGPKGDQGEPGESGPQGERGIGEPGPKGEPGPVGAPGIPCIPGEDGSVGPKGEMGISGERGOEGSP 472 NPGTGFTGPKGEQGFPGNPGAPGORGTGEPGPGRGPGLRGLAGDPGIPGQDGASGPKGEIGLPGAKGPDGPP 471 PPGQSPGPKGEVGOMGPIGPRGPMGISVQGPKGEPGTVGLPCQPGPGGDGASGFKGEAGLPGTRGPEGMP	KETPGEKGDREDRGSRGPPGSSGAAGE RELPGEKGDRGERGSRGQPGPTGPAGA KEQPGPKGDEGKKGSKGNQGQRGFPGP
za2a za2b za1a za1b ma1	589 SGAKGEPGTPGRLGMPGLFGRATAGPKGDLGPAGPPGPIGEIGYGLPGPKGDRGNPGPHGESGPKGDGPGP9 590 SGSKGEPGTPGRQGLPGLFGRATSGPKGDVGPPGPSGPVGTGYGTGPKGDRGDPGLPGLTGLKGDGYPGP 575 PGAKGEPGSIGMMGLPGPSGRGTPGAKGDEGPAGPPGHVGEFGVGTGPKGDRGSPGPVGPQGKKGDGYPGP 572 TGEKGNPGNVGPGVPGPIGRGTPGAKGDLGPVGPPGPAGEFGIGTAGPKGTGLPGSFGPPGLKGBGYPGP 571 EGPKGEPGVVGPFGMPGASIFGPSGPKGDRGPCMPGLKGEFGLPVFGPKGAQGPRGPVGAPGLKGDGYPGV	GLPGLPGLPGEIGPE <mark>GO</mark> GIPGPKGDR GPPGLPGLTGEIGPE <mark>GIG</mark> LPGPKGERG
za2a za2b za1a za1b ma1	689 FRGLPGLPGPFGESLQGKOGNTGRPGPPGEHGPPGESIQGPKGDQGAPGVTGPRGPSGESLPGAKGDRGLQGE 690 FRGLPGPPGPGESLQGPGTVGRPGPSGPTGQPGGGIQGSKGDQGLQGVTGPRGFFGEGMPGSKGDRGAQGE 675 SPGVTGPSGPPGTSLPGPKGVGQPGAPGLSGPFGESIQGPKGDPGFQGLPGPRGPFGDSLPGEKGDRGLSGE 672 PQGSPGPAGATGLCOMGPKGSIGLTGPVGPPGLPGESIQGCKGEPGYQGLQGPRGLTGESLPGQKGDRGPQF 671 VRGPPGPSGPRGTCTGPKGDTGQKGLPGPPGPECYGSQGIKGEQGPQGFPGSKGTVGLGPGQKGPHGDRG	ERGVKGVKGDMGDPGVSGQAGRPGIKGE ERGRKGERGEHGVPGVGSKGKPGEKGP AQGRKGEEGRQGPGLTGPPGNAGKKGE VGRKGEKGETGEPGSPGKQGLQGPKGD
za2a za2b za1a za1b ma1	789 QGLTREDIIKLIKEICGCGIKCKERPMELVFVIDSSESVGPENFEIIKDFVIALVDRVTVGRNATRIGLLYS 790 SGLTRDEIIRMIREICGCGVKCKERPMELVFVUDSSESIGPENFEIIKDFVAALVDRLTIGRNATRVGLVLYS 775 PGLSREEVIKTIREICGCCVKCRTSPLELVFVIDSSESVGPENFEVIKDFVNSLTEHVSVSREATRVGVULYS 776 PGLTREDIIFLIRSICGCCRICRVNPLELVFVIDSSESVGPENFEVIKDFVNTLTDRTSVSPEVTRVGTVLYS 771 LGLTKEIIKLIECGCGFKCKETPLELVFVIDSSESVGPENFEVIKDFVNTLTDRTSVSPEVTRVGTVLYS 772 RGLTREDIIKLIECGCGFKCKETPLELVFVIDSSESVGPENFEVIKDFVNTLTDRTSVSPEVTRVGTVLYS 774 LGLTKEIIKLIECGCGFKCKETPLELVFVIDSSESVGPENFEVILOSFVKTLADRVALDLGTARIGITNYS	LEVOLEFNLARYTTKODIKEAIRRVHY HVEVVVASLOQLYDOAAVKTAVRRMPY NINLLVTNIQDRLTRDEVKAAVRRMPY
	889 MGEGTYTGTAIRKATOEAFSARNGVRKVAIVITDGOTDKREPVKLLIAVREAQVANIEMYALGIVNTSDETC 890 IGEGTYTGSAIHNATHEAFYSARTGVKKVAIVITDGOTDKREPVKLEIAVREAHANIEMYALGIVNTSDETC 890 IGEGTYTGSAIHNATHEAFYSARTGVKKVAIVITDGOTDKREPVKLEIAVREAHANIEMYALGIMNISNETC 875 LGEGTTTGSAIRRAT.OLDOARPGVRKVAVVITDGLADNRDAVSIKDAAEGAHSAGIEIFVGIVNNSDSOV 872 IGEGTYTGSGIRKAN.EMEAFARPGVRKVAVVITDGOTDHRDVKKLADVVKALDNITMFAIGVVNOSDFI 871 LGEGTYTATALQAAN.DMFKEARPGVKKVALVITDGOTD VWKA2	NEFLQELSLIASHPDSEHMYYIKDEN AEFKNEMNILASDPDENYVYLTDDFLK IDJFKQELKSIASPFTEEHMESVEDFRM BIFHKEMNLIATDAEHVYQFDDFT
mal	989 IP.ALESKLVSQFCEDENGALYFNRITNGLNGNNGFGYSNGQEDISSYGNIVYGSRFQESIDRSQSH1 990 IP.ALESKLVNQLCEDESRALIFNRINDFENGYGLNGNRINGNGGHNFDTSTYKGSRENIG.TPSATNTVITE 974 IH.ALESRLLNHICEHDNGKVFSSSGKTIHPFGPDPVPDRTEPPT 971 IH.ELQSKLLQKVCENIDGSTFPE 968 IQDTIKQKISKKICEDFDSYLIQVFGSPSF0PEFGVSEREVSVST.	PKPAKEMSKSFNVS
mal	082 EDLDIKTQTKSGGTVVVVNKTVOFAQPGTSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	CQLSFVOGSCRNYVIRWYYHXOS JCKLLLDOGPCREYNIRWYYPOA LKHVGCGQGLDPGPCREYSVMWYDPOA RCLQPLDPGPCREYVVKWYHDPKA
za2a za2b za1a za1b ma1	178 NSCAQFWYGGODGNDNRFHTEBECKTTCVLSSTV 165 NACAQFWYGGCEGNRNRFTTEBECKTCVVV~~~ 140 NACAQFWYGGCQGNSNRFFTEDICKSTCVQT~~~ 079 NSCAQFWFGGCKGNKNQFDSELTCRKTCVRL~~~ 111 NSCARFWFSGCNGSGNRFHSEKECRETCLKQ~~~ 	

Please cite this article as: J. M. Gebauer, et al., Structure, evolution and expression of collagen XXVIII: Lessons from the zebrafish, Matrix Biol (2015), http://dx.doi.org/10.1016/j.matbio.2015.07.001

2

Download English Version:

https://daneshyari.com/en/article/8455176

Download Persian Version:

https://daneshyari.com/article/8455176

Daneshyari.com