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Alternative Polyadenylation
Patterns for Novel Gene Discovery

and Classification in Cancer

Abstract

Certain aspects of diagnosis, prognosis, and treatment of cancer patients are still important challenges to be
addressed. Therefore, we propose a pipeline to uncover patterns of alternative polyadenylation (APA), a hidden
complexity in cancer transcriptomes, to further accelerate efforts to discover novel cancer genes and pathways.
Here, we analyzed expression data for 1045 cancer patients and found a significant shift in usage of poly(A) signals
in common tumor types (breast, colon, lung, prostate, gastric, and ovarian) compared to normal tissues. Using
machine-learning techniques, we further defined specific subsets of APA events to efficiently classify cancer
types. Furthermore, APA patterns were associated with altered protein levels in patients, revealed by antibody-
based profiling data, suggesting functional significance. Overall, our study offers a computational approach for use
of APA in novel gene discovery and classification in common tumor types, with important implications in basic
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research, biomarker discovery, and precision medicine approaches.

Introduction

Despite the flow of new information provided by genome and
transcriptome  sequencing studies, certain aspects of diagnosis,
prognosis, and treatment of cancer patients are still important
challenges to be addressed. Therefore, a better understanding of the
complexity of cancer necessitates characterization of “less obvious but
potentially important” changes that we generally fail to detect or
consider to be noise in conventional experimental setups. From
this perspective, gene expression studies face a key bottleneck;
conventional methods are generally not tailored to detect nor quantify
3’ isoforms generated by alternative polyadenylation (APA) [1]. This
may negatively impact our ability to discover cancer-related genes and
comprehensively understand critical molecular mechanisms underlying
disease progression.

APA isoforms are formed as a result of endonucleolytic cleavage of
the nascent RNA at alternative poly(A) sites [2]. APA is tightly
regulated and is responsive to proliferative, tissue-specific, or
developmental cues [3]. APA-generated short or long 3’ untranslated
region (UTR) isoforms harbor different cis-elements where
microRNAs (miRNAs) and/or RNA-binding proteins bind [4].
Consequently, APA isoforms have different stability, localization, and
translation efficiency, all of which significantly modulate protein
levels and/or activity. Considering that majority of human genes have

multiple poly(A) sites in their 3’-ends [5], APA constitutes an
important but less understood layer of complexity in gene expression
regulation. Recently, deregulation of APA has gained increasing
interest in cancer research because APA emerges as a novel mechanism
to activate oncogenes, generally by 3’UTR shortening and loss of
repressive cis-elements. For example, 3"UTR shortening of CCNDI
(Cyclin D1) mRNA prevents the miRNA-mediated repression and
causes further increase in CCNDI levels, which correlate with
decreased overall survival of patients [6]. Insulin-like growth factor 2
mRNA binding protein 1 (/GF2BPI) also goes through a shortening
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of 3’'UTR, and this shorter isoform is associated with profound
oncogenic transformation [7]. In addition, our group reported
hormone-responsive APA, where estrogen treatment resulted with
upregulation and 3’UTR shortening of cell division cycle 6 (CDC6),
a major regulator of DNA replication, in breast cancer cells. Thus, as a
result of APA, the short CDC6 isoform was linked to higher CDC6
protein levels and increased S-phase entry [8].

While numerous cases of 3'UTR shortening have been linked to
increased protein levels and oncogene activation [7], consequences of 3’
UTR shortening on protein levels and functions may be complex. It turns
out that 3'UTR shortening may also lead to changes in secondary
structure of the mRNA, exposing hidden cis-elements, this time leading
to decreased protein levels [9]. In addition, 3'UTR isoforms can have
different functions as scaffolds to tether RNA-binding proteins that alter
the localization and even function of the translated protein [10].
Alternatively, in cases where proximal poly(A) signals are within introns or
coding exons, truncated proteins can be generated with potentally
different and/or opposing functions (reviewed in [11]). Hence, APA can
contribute to the oncogenic phenotype through various mechanisms [7].

Despite these potential impacts, APA-generated isoforms are generally
undetected simply because we do not look for them in conventional gene
expression analyses. Here, we report a meta-analysis pipeline for APA
isoform discovery to improve cancer-related gene discovery efforts.
Identification of cancer specific APA isoforms is likely to have important
implications in basic cancer research and biomarker discovery fields. We
anticipate our proposed comprehensive approach to be applicable to other
malignancies where expression datasets are available.

Materials and Methods

Datasets

For the discovery datasets, breast, colon, lung, ovarian, and prostate
cancer patient data (GSE2109), as part of Expression Project for
Oncology from National Center for Biotechnology Information
Gene Expression Omnibus (GEO), were utilized. Data for gastric
cancer and normal samples (GSE29272) were obtained from GEO.

Breast cancer patient data included 318 patients: 69 patients
(21.7%) were diagnosed as estrogen receptor negative (ER-), 146
(45.9%) were ER+, and 12 patients (3.8%) were diagnosed with
triple-negative breast cancer. Colon cancer patient data included 249
cancer samples: 203 patients (81.5%) were diagnosed with
adenocarcinoma, 30 (12%) with mucinous carcinoma, 15 (6%)
with carcinoma arising in a villous adenoma, and 1 (0.4%) with signet
ring cell carcinoma. Gastric cancer patient data included 134 patients:
62 patients (46%) were diagnosed with cardia adenocarcinoma, and
72 (54%) were diagnosed with noncardia adenocarcinoma. Lung
cancer patient data had 105 samples: 32 patients (31%) were diagnosed
with squamous cell carcinoma, 29 (28%) with lung adenocarcinoma, and
13 (13%) with bronchioloalveolar carcinoma. Ovarian cancer patient data
included 166 samples: 28 patients (16.9%) were diagnosed with papillary
serous carcinoma, 27 (16.3%) with papillary serous adenocarcinoma, and
15 patients (9%) with endometrioid cancer. Prostate cancer patient data
had 73 samples: 63 patents (86%) were diagnosed as acinar type
adenocarcinoma and 10 (14%) as adenocarcinoma-NOS.

Detection and Quantification of APA Events

APADetect tool [12] was used to detect and quantify APA events in
common cancers. CEL files of Human Genome U133A (HGU133A,
GPL96) and U133 Plus 2.0 arrays (HGU133Plus2, GPL570) were

analyzed to identify intensities of probes that were grouped based on

poly(A) site locations extracted from PolyA_DB [13]. For each
transcript, mean signal intensities of proximal and distal probe sets
were calculated. The ratio of proximal probe set mean to the distal
probe set was called the “short to long” ratio (SLR). SLR values of
cancer samples were compared to those of corresponding normal
tissue samples. Next, SLR values were further subjected to
significance analysis of microarrays (SAM) [14], as implemented by
the TM4 Multiple Array Viewer tool [15], for statistical significance
after log normalization. A fold change filter further eliminated APA
events below a determined threshold (SLR >1.5 for shortening events
or SLR <0.66 for lengthening events). SLR values reported in at least
85% of the samples were included in the subsequent analysis and
classification pipeline.

Feature Selection

Correlation-based feature selection subset evaluation (CfsSubsetEval)
method was used to avoid overfitting and “curse of dimensionality”
problems [16,17], as implemented in WEKA data mining software
[18]. CfsSubsetEval assessed the performance of a subset of attributes
(i.e., SLR values) based on predictive ability and redundancy. The
subset space of all the attributes were searched using the BestFirst
algorithm with default parameters in WEKA [19]. The attributes were
evaluated using 10-fold cross validation. To increase specificity and
sensitivity, we selected SLR values that were listed as best attributes in at
least 5 of the 10 cross-validations. This group of APA events was
identified as best first list (BFL) (Supplementary Tables 1, 2). Heatmap
illustration of APA events in BFL was done with a hierarchical clustering
implemented in Multiple Array Viewer tool [15]. For the hierarchical
clustering based on Pearson correlation coefficient, average linkage-
based gene tree with optimized gene leaf order was used as parameter.
For a distance-based comparison of the samples, we constructed
color-coded gene distance matrices for normal and cancer samples using
Pearson correlation coefficient (Supplementary Figure 1).

Random Forest

Random forest classifiers [20,21] were trained using SLR values in
BFL. Both the selection of features and training of random forest
classifiers were conducted using only the discovery (i.e., training)
datasets. The classification accuracy was assessed in independent
validation datasets. Use of random forest classifiers was also important
for error balancing which can be critical for cancer studies as the
number of control samples is usually smaller than the number of
cancer samples. Confusion matrix for cancer type analysis was
constructed as an output of random forest analysis.

Principle Component Analysis (PCA)

PCA [22] was performed to visualize the SLR-based separation
between samples in a lower dimensional space. PCA, as implemented in
WEKA, was used with default parameters. Dimensionality reduction was
accomplished by choosing the top two principle components in the
normal versus cancer separation and top three principle components in
the cancer classification. PCA results were then visualized using GraphPad
Prism 6 software and Gnuplot (http://gnuplot.sourceforge.net).

Ontology and Network Analysis

Significant APA events (SLRs <0.66 or >1.5) were analyzed by
Gene Set Enrichment Analysis (GSEA) (http://www.broadinstitute.
org/gsea/index.jsp) [23] and Molecular Signature Database [23].
Network database STRING (http://string-db.org) [24] was used to
find potential networks in the APA-regulated transcript lists.
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