
Accepted Manuscript

A Trithiol Bifunctional Chelate for 72,77As: a Matched Pair Theranostic Complex with High in vivo Stability

Yutian Feng, Anthony J. DeGraffenreid, Michael D. Phipps, Tammy L. Rold, Nkemakonam C. Okoye, Fabio A. Gallazzi, Charles L. Barnes, Cathy S. Cutler, Alan R. Ketring, Timothy J. Hoffman, Silvia S. Jurisson

PII: S0969-8051(17)30434-1

DOI: doi:10.1016/j.nucmedbio.2018.03.001

Reference: NMB 8003

To appear in:

Received date: 22 December 2017
Revised date: 13 February 2018
Accepted date: 4 March 2018

Please cite this article as: Yutian Feng, Anthony J. DeGraffenreid, Michael D. Phipps, Tammy L. Rold, Nkemakonam C. Okoye, Fabio A. Gallazzi, Charles L. Barnes, Cathy S. Cutler, Alan R. Ketring, Timothy J. Hoffman, Silvia S. Jurisson, A Trithiol Bifunctional Chelate for 72,77As: a Matched Pair Theranostic Complex with High in vivo Stability. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Nmb(2017), doi:10.1016/j.nucmedbio.2018.03.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A Trithiol Bifunctional Chelate for ^{72,77}As: a Matched Pair Theranostic Complex with High *in vivo* Stability

Yutian Feng¹, Anthony J. DeGraffenreid^{1,5}, Michael D. Phipps¹, Tammy L. Rold⁴, Nkemakonam C. Okoye¹, Fabio A. Gallazzi³, Charles L. Barnes¹, Cathy S. Cutler^{2,5}, Alan R. Ketring², Timothy J. Hoffman⁴, and Silvia S. Jurisson^{1,2*}

¹Department of Chemistry, ²Research Reactor Center (MURR), ³Molecular Interaction Core, University of Missouri, Columbia, MO 65211, U.S.A. ⁴Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, U.S.A. ⁵Medical Isotope Research and Production Program (MIRP), Collider-Accelerator Department, Brookhaven National Laboratory, PO Box 5000, Building 801, Upton, NY 11973.

Abstract

Introduction: Trithiol chelates are suitable for labeling radioarsenic (72 As: 2.49 MeV β^+ , 26 h; 77 As: 0.683 MeV β^- , 38.8 h) to form potential theranostic radiopharmaceuticals for PET imaging and therapy. To investigate the *in vivo* stability of trithiol chelates complexed with no carrier added (nca) radioarsenic, a bifunctional trithiol chelate was developed, and conjugated to bombesin(7-14)NH₂ as a model peptide.

Methods: A trithiol-BBN(7-14)NH₂ bioconjugate and its arsenic complex were synthesized and characterized. The trithiol-BBN(7-14)NH₂ conjugate was radiolabeled with ⁷⁷As, its *in vitro* stability assessed, and biodistribution studies were performed in CF-1 normal mice of free [⁷⁷As]arsenate and ⁷⁷As-trithiol- BBN(7-14)NH₂.

Results: The trithiol-BBN(7-14)NH₂ conjugate, its precursors and its As-trithiol-BBN(7-14)NH₂ complex were fully characterized. Radiolabeling studies with nca ⁷⁷As resulted in over 90% radiochemical yield of ⁷⁷As-trithiol-BBN, which was stable for over 48 h. Biodistribution studies were performed with both free [⁷⁷As]arsenate and Sep-Pak® purified ⁷⁷As-trithiol-BBN(7-14)NH₂. Compared to the fast renal clearance of free [⁷⁷As]arsenate, ⁷⁷As-trithiol-BBN(7-14)NH₂ demonstrated increased retention with clearance mainly through the hepatobiliary system, consistent with the lipophilicity of the ⁷⁷As-trithiol-BBN(714)NH₂ complex.

Conclusion: The combined *in vitro* stability of ⁷⁷As-trithiol-BBN(7-14)NH₂ and the biodistribution results demonstrate its high *in vivo* stability, making the trithiol a promising platform for developing radioarsenic-based theranostic radiopharmaceuticals.

Download English Version:

https://daneshyari.com/en/article/8457612

Download Persian Version:

https://daneshyari.com/article/8457612

<u>Daneshyari.com</u>