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a  b  s  t  r  a  c  t

Retrieval  of  particle  size  distribution  from  extinction  data  is  solved  analytically  using  a product  ker-
nel  concept  and  its  extension  to partially  absorbing  materials.  While  a conventional  analytical  method
overestimates  the  portion  of large  particles,  the correction  to  the  integral  formula  makes  the  solution
acceptable  also  for  larger  absorbing  particles.  A set  of  numerical  experiments  on synthetically  gener-
ated  aerosol  optical  depths  has proven  improved  accuracy  of  new  formula  that  is simple  and  keeps
requirements  on  computational  time  or memory  consumption  low  enough.  The  numerical  tests  shown
that original  and  reproduced  size  distributions  are  quite  consistent,  including  the  peak  position  and  full
width  at  half maximum.  The  main  advantage  of the  analytical  approach  presented  here  is  its  easy  appli-
cability  in  fast  sampling  of rapidly  evolving  particulate  systems,  where  quick  estimation  of modal  radius
or  PM1.0,  PM2.5  and  other  fractions  of  the aerosol  population  is required.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Optical sensing is a traditional approach to retrieve the informa-
tion on polydisperse discrete random systems containing particles
with sizes comparable to the wavelength of observation [1,2]. It
includes an atmospheric environment polluted by natural or man-
made pollutants, clouds, biological aerosols such as bacteria and
pollens, and especially dust, cosmic dust dispersed in interplane-
tary and interstellar space, but also small contamination embedded
into semitransparent media, or other particles being a direct or a
side product of industrial processes. The particles developed for
medical or engineering applications represent a special class of
tiny objects (powders) that are subject for lab diagnostics to con-
trol their microphysical properties, specifically the purity and/or
monodispersity [3,4].

The electromagnetic interaction with a particulate system
depends on microphysical properties such as chemistry, sizes,
shapes, internal topology and total concentration of scattering
domains. Small particles dispersed in a monitored environment
redistribute the electromagnetic radiation to all directions, change
the polarization state and/or remove part of the energy flux from
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the forward beam, and also modify the spectrum of an incident
electromagnetic signal. Since the absorption coefficient is a mate-
rial property showing a non-trivial dependency on the operational
wavelength [5] the transmission as well as the attenuation spectra
can differ markedly from that of emitting light source. However,
the extinction curve is a product of both the absorption and scat-
tering processes, where the latter manifests essential wavelength-
and size-dependences [6]. Therefore an alteration of a particulate
system can be identified by measuring its optical response at wave-
lengths comparable to the dominant particle sizes.

A conventional objective of optical sensing methods is to deter-
mine the size distribution of polydisperse system of particles, which
is particularly important for the physics of nucleation, coagula-
tion, aggregation, or crystal growth either in lab or in nature. As
the full-featured multiangle scattering or polarization measure-
ments are still possible for only a few media, the most commonly
retrieved optical property of particulate system is the extinction.
This property is routinely recorded in remote sensing of atmo-
spheric environment or distant objects of astrophysical interest [7].
There exists a vast database of extinction data, which has great
information content in respect to particle size distribution. A rapid
increase in number of experimental data and also constantly grow-
ing interest in dynamically evolving particulate systems pose large
demands on fast and reliable computational methods for estimat-
ing the temporal behavior of particle size distribution.

Motivated by a large variety of problems in which the instan-
taneous characterization of particle system plays a crucial role we
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have found a simplified solution to the first kind Fredholm integral
equation with a modified product kernel. The solution concept uses
Mellin transform technique and anomalous diffraction approxi-
mation to the Mie  extinction kernel combined with an analytical
extension to partially absorbing particles. Despite of tenuous the-
oretical foundation of this semi-analytical approach, the solution
formula works quite well.

2. Retrieval of particle size distribution from extinction
data

Reconstruction of particle size distribution is an ill-posed prob-
lem that is difficult to solve because small perturbations on data
function typically translate to large discrepancies in solution vec-
tor [8]. To overcome such instability with a numerical solution the
quadratic minimization principle is customarily combined with a
quadratic constraint assuming one of the quadratic forms is non-
degenerated and both are positive. Then the system reduces to the
well-posed problem [9].

The mapping between particle optical depth � (�) and
the projected-surface-area distribution function s (r) is possible
through the efficiency factor for extinction Qext (r, m, �)

� (�) =
∞∫
0

Qext (r, m,  �) s (r) dr + ε, (1)

where r is the particle radius, m is the particle refractive index mea-
sured relative to the surrounding environment, � is the wavelength
of an incident radiation, and ε is measurement noise. Numerical
solution to Eq. (1) requires its algebraization in form

�� = Qext�s + �ε, (2)

where the solution vector �s˛ satisfies the following condition (Zuev
and Naac, 1982)∥∥�� − Qext�s˛

∥∥2 ≤ ı
(

ε2
)

= cε2, (3)

with ı
(

ε2
)

being an error margin and c a real value. Traditional
solution to Eq. (2) uses the regularization principles [10], where ˛
is so-called parameter of regularization minimizing the functional
˚˛

˚˛ =
∑

i

⎡
⎣∑

j

Qijsj − �i

⎤
⎦

2

+ ˛
{�sT · H · �s

}
. (4)

here H is a symmetric matrix which has relation to concept of
smoothing the vector �s. For instance Kabanov et al. [11] imple-
mented the Legendre polynomials to smooth �s resulting in a simple
form of H with only few non-zero diagonal and near-diagonal ele-
ments. The second term in Eq. (4), i.e. the stabilizing functional, is
weighted by the parameter  ̨ that can be found applying a discrep-
ancy principle [12].

In practically important cases the extinction is measured at dis-
crete wavelengths ranging from �1 to �2, so Eq. (1) is typically
written in form

� (�) =
r2∫
r1

Qext (r, m,  �) s (r) dr + ε, (5)

which is a mapping in Hilbert space from L2 [�1, �2] to L2 [r1, r2]
[13]. Since � (�) is measured only at bounded spectral interval, the
information content of extinction data is limited to particles with
radii varying from ≈r1 to ≈r2. Shifrin [14] has performed a few
numerical experiments on monomodal size distributions and found
approximate relation between particle modal radius and spectral

interval needed for reconstruction the original size distribution
function s (r).

Although the regularization algorithm is frequently used in opti-
cal diagnostics of turbid media, it requires a reasonable estimation
of radii interval r1 → r2. If chosen inappropriately, the sought solu-
tion might become partly or fully inaccurate. In addition the error
margin has to be known, otherwise the convergence of s (r) can
suffer from too weak or too strong constraints. If e.g. the error mar-
gin is unrealistically low, the solution becomes unstable with a few
oscillations including unphysical (negative) values. Also, it has to
be emphasized that too dense spectral grid does not lead to higher
information content. In contrast, the ill conditioned level would
increase since not all data � (�) contains new information, and con-
sequently the number of independent equations does not exceed
the number of unknowns. If however the spectral spacing is too
sparse, the solution function might appear inaccurate. In principle,
the optimum choice for spectral interval depends on the kernel of
the integral equation. The regularization concept is usually imple-
mented as iteration scheme, where the minimization is ruled by ˛.
At present the high performance computers are well suitable for
solving system of many equations, but CPU requirements are still
large enough if online analysis of rapidly evolving media is intended
or if vast database of archived optical data is to be processed rou-
tinely. In such a case, the approximate tools are more convenient
even if they provide less accurate results.

3. Analytical solution for a product kernel

Applying analytic eigenfunction theory to anomalous diffraction
approximation to Mie  theory extinction kernel (Box and Box, 1983),
the solution function can be found as an integral product of qext and
data function. Here qext is the Mellin transform of Qext. This concept
is well applicable to product-type kernels [15], where Qext (r, �) can
be replaced by Qext

(
r�−1

)
. The Mellin transform of kernel Qext is

based on two-sided Laplace’s transform

{
MQ

}
(s) = q

(
ˇ
)

=
∞∫
0

Xˇ−1Q (X) dX, (6)

where the inverse transform is

{
M−1q

}
(X) = Q (X) = 1

2�i

c+i∞∫
c−i∞

X−ˇq
(

ˇ
)

dˇ. (7)

Following Shifrin’s and Perel’man’s approach [22], we can define
the data function in the form of T

(
ˇ
)

= ˇ
[
�
(

ˇ
)

− � (∞)
]
, where

 ̌ = 2� (m − 1) /� has dimension m−1. In contrast, Perel’man and
Punina [21] rather introduced a dimensionless parameter ˇ* ∝ ˇr0
with r0 being a particle radius. Since the projected-surface-area
distribution function s (r) is defined as �r2f (r),  the theoretical
(errorless) optical thickness can be expressed in the form

� (�) = �

∞∫
0

Qext (r, m, �) r2f (r) dr, (8)

with f (r) being the number size distribution function. Using the
above convention, we  have

T
(

ˇ
)

= 2�
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0

p
(

2rˇ
)

rf (r) dr, (9)

with

p (z) = 1  − cos (z)
z

− sin (z) . (10)
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