
Original article

Clinical decision support of radiotherapy treatment planning:
A data-driven machine learning strategy for patient-specific
dosimetric decision making

Gilmer Valdes a,⇑, Charles B. Simone II b, Josephine Chen a, Alexander Lin c, Sue S. Yom a,d, Adam J. Pattison e,
Colin M. Carpenter e, Timothy D. Solberg a

aDepartment of Radiation Oncology, University of California, San Francisco; bUniversity of Maryland Medical Center, Baltimore; cDepartment of Radiation Oncology, University of
Pennsylvania, Philadelphia; dDepartment of Otolaryngology-Head and Neck Surgery, San Francisco; and e Siris Medical, Redwood City, United States

a r t i c l e i n f o

Article history:
Received 31 May 2017
Received in revised form 10 October 2017
Accepted 10 October 2017
Available online xxxx

Keywords:
Decision support system
Knowledge-based planning
Dosimetric tradeoffs

a b s t r a c t

Background and purpose: Clinical decision support systems are a growing class of tools with the potential
to impact healthcare. This study investigates the construction of a decision support system through
which clinicians can efficiently identify which previously approved historical treatment plans are achiev-
able for a new patient to aid in selection of therapy.
Material and methods: Treatment data were collected for early-stage lung and postoperative oropharyn-
geal cancers treated using photon (lung and head and neck) and proton (head and neck) radiotherapy.
Machine-learning classifiers were constructed using patient-specific feature-sets and a library of histor-
ical plans. Model accuracy was analyzed using learning curves, and historical treatment plan matching
was investigated.
Results: Learning curves demonstrate that for these datasets, approximately 45, 60, and 30 patients are
needed for a sufficiently accurate classification model for radiotherapy for early-stage lung, postoperative
oropharyngeal photon, and postoperative oropharyngeal proton, respectively. The resulting classification
model provides a database of previously approved treatment plans that are achievable for a new patient.
An exemplary case, highlighting tradeoffs between the heart and chest wall dose while holding target
dose constant in two historical plans is provided.
Conclusions: We report on the first artificial-intelligence based clinical decision support system that con-
nects patients to past discrete treatment plans in radiation oncology and demonstrate for the first time
how this tool can enable clinicians to use past decisions to help inform current assessments. Clinicians
can be informed of dose tradeoffs between critical structures early in the treatment process, enabling
more time spent on finding the optimal course of treatment for individual patients.
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The ideal radiotherapy treatment plan should be personalized,
delivering a potentially curative tumor dose while minimizing tox-
icity based on the individual patient’s specific anatomy and under-
lying medical condition. Traditionally, treatment planning
decisions are guided by high-quality scientific studies that map
quantities of radiation dose, e.g. Dose to 20% of the Lung Volume
(V20) or prescribed dose, to the likelihood of tumor control and
normal tissue toxicity. While the challenge of dosimetrically-
based planning is a solvable computational problem, the underly-
ing clinical challenge lies in understanding the best treatment plan
that can be achieved for a specific patient, related to differences in

patient anatomy, tradeoffs in the weighting of planning con-
straints, and conscious and unconscious biases on the part of the
prescribing physicians [1]. Moreover, the process of creating a
treatment plan requires close communications between practition-
ers with different areas of expertise in clinical medicine (physi-
cian), radiation delivery (physicist), and treatment planning
software (dosimetrist).

Clinical decision support systems leverage the history of past
decisions by a clinical team and quickly provide reference data
informed by past successes at a given clinic or shared between
clinics. Combined with contemporary machine learning (also
known as artificial intelligence) algorithms and large data stores,
these expert systems have begun to impact clinical practice, with
examples such as the triage of patients in the Emergency Depart-
ment [2] or highlighting of calcifications in breast mammography
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[3]. A key element of these systems is the ability to augment clin-
icians’ knowledge by processing previous decision records to iden-
tify those prior decisions and accompanying parameters that are
relevant to the current patient. Together with new algorithm
development, these systems promise to change the way decisions
are made in medicine [4–6]. In radiation oncology, machine learn-
ing has been used in applications ranging from quality assurance to
patient toxicity but clinical decision support systems (CDS) that
empower physicians have not reached widespread use [7–13].

This paper demonstrates a clinical decision support system uti-
lizing machine-learning for patient-specific treatment planning in
radiation oncology with the purpose of assisting the radiotherapy
planning team in making better treatment plan decisions by lever-
aging past data. The key differentiation of our system from other
‘‘knowledge based solutions” (KBS) to treatment planning is the
focus on helping physicians navigate expectations about dosimet-
ric tradeoffs before the treatment planning process. While other
existing approaches focus on determining dose–volume histogram
(DVH) expectations for individual organs at risk [14–16], our
approach allows prospective, expectant navigation of the inherent
tradeoffs between those expectations. The CDS described here is
aimed at helping physicians and the clinical team to determine
the best course of treatment before expending resources on a
lengthy treatment planning process, and to better define expecta-
tions among the radiation oncology team during the course of plan
development. While treatment planning is still required, the
knowledge ascertained from a CDS has the potential to guide ther-
apy and decrease the time needed to reach an acceptable plan.

Methods

Data collection

Data from 2009 to 2015 from the University of Pennsylvania
Health System was used in this Institutional Review Board-
approved retrospective study. The dataset was comprised of 104
consecutive early-stage lung cancer patients treated with stereo-
tactic body radiation therapy (SBRT). Of these data, 81 received a
prescription of 5000 cGy in 4 or 5 fractions to the planning target
volume (PTV) (peripheral lesions), with the remaining receiving a
prescription of 6000 cGy in 8 fractions (central lesions). An addi-
tional dataset was comprised of 40 patients with advanced-stage
squamous cell carcinoma of the oropharynx who received postop-
erative proton radiotherapy. Of these data, 38 patients were pre-
scribed between 6000 and 6600 cGy to the PTV (proton
Radiobiological Effect Dose, RBE = 1.1). For each oropharynx
patient, there also existed a volumetric modulated arc therapy
(VMAT) clinical backup photon plan. Patients were identified
through a database query (ARIA, Varian Medical Systems, CA).
These data were exported, anonymized, and accumulated for pro-
cessing by commercial software designed for the purposes of this
study (QuickMatch, Siris Medical, CA).

Patient treatment plan classification

The goal of the CDS system is to match the current patient to
previously treated patients with similar characteristics, such that
previously achieved treatment plans and tradeoffs can be explored.
This is represented schematically in Fig. 1. Current planning
approaches either do not algorithmically use past data (Fig. 1A),
or use past data to understand trends from DVH subpopulations
(Fig. 1B), primarily as a quality assurance tool. In contrast, plan
classification identifies discrete historical plans that can include
dose tradeoffs between the target and various organs-at-risk. The
requirements for plan classification are an accurate classification
algorithm combined with a knowledge database of previous

patient treatments. With a sufficiently large database, various
achievable results will be proposed by the algorithm such that
the clinical team has multiple reference points to use for optimally
choosing the appropriate dose trade-offs for a given patient
(Fig. 1C and E).

Consider a database of plans, P, from which we seek matches to
a specific plan p, where matching is defined according to a dissim-
ilarity index of the dosimetric indices between plans. Addressing
this problem as a classification problem similar to nearest neighbor
classification, we would like to find the plans in P that are closer to
p in terms of the dissimilarity index. A probability threshold, s, is
set for the dissimilarity index, and prior treatments that are within
the threshold produce treatment plan matches. Formally, the sub-
set Pp # P of plans in P that matches plan p can be defined as:

Pp # P : dissimilarityðPi;pjFp ¼ f p;Dp ¼ dp; Fi ¼ f i;Di ¼ diÞ 6 s
ð1Þ

where f are the features, d are the dosimetric indices, and the
indices ‘‘i” denote different plans in the database. For the current
patient, Fp and Dp are the features and dosimetric indices. A thresh-
old, s, is set for classification, and prior treatments that are within
the threshold produce treatment plan matches. This probability
threshold defines achievability and incorporates known sources of
dosimetric variability in planning, including the repeatability of
the treatment plan produced by the treatment planning system,
vTPS, and the variation in treatment planning preference between
clinicians, vC. The variability in the treatment planning system is
found empirically by repeatedly running the treatment planning
system for a given set of dosimetric objectives and priorities on
exemplary treatment plans. The variability in clinician preference
can be learned by calculating the variability in prediction for predic-
tion models built on different subgroups of the dataset, stratified by,
for example, treatment planner or physician. This threshold is
defined as:

T ¼ vTPS þ vC ð2Þ
More specifically, the dissimilarity between the new patient

plan p and a historical patient plan Pi is determined by calculating
the difference between the j dosimetric indices of patient p and
patient Pi. A historical patient is a match if,

distancefdpj ;dijg 6 T;8j ð3Þ
For an historical patient, di are the dosimetric indices from the

historical plan. For the new patient,

dp ¼ Fðf pÞ ð4Þ
where f p are the generated features for the new patient. As noted
above, a boosting framework is used to predict the dosimetric
indices:

Fðf pÞ ¼
X

j

Tjðf pÞ ð5Þ

where T(f) is a weak learner. Because of the modern machine learn-
ing approach that was used (boosting) and our extensive feature-
set, the summation in Eq. (5) is over thousands of decision trees that
take input from thousands of features. Therefore, a more detailed
description of the function represented in Eq. (5) is not practical
in this manuscript, and powerful computation is needed to obtain
its value. Boosting is a well-known technique in modern machine
learning and has been proven to be one of the most accurate, but
powerful computing is required to generate the result [19].

Creating the features that account for data variability is a criti-
cal aspect of an accurate classifier; this process is often viewed as
the most important aspect of a machine learning algorithm [19].
For an accurate feature set, we perform analysis on DICOM images,
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