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a  b  s  t  r  a  c  t

The  propagation  of two mutually  incoherent  coupled  super-Gaussian  (SG)  beam  pairs  in  strong  nonlocal
media  was  studied  by variational  approach  and  numerical  simulation.  For  forming  a  SG  vector  solitary
wave,  the  total  initial  power  must  be equal  to the  critical  power  and  the ratio of the two  beam  widths
should  be equal  to a certain  value.  The  numerical  results  show  that  the  normalized  critical  power  is  a
monotonically  increase  function  of the  order  of SG  solitary  wave.  Therefore,  the phase  shift,  which  is
effectively  determined  by the critical  power,  will  increase  quickly  with  the  order  of  SG  solitary  wave
increasing.  Since  the  phase  shift  is  large  for the low-order  SG solitary  wave  and  SG beam  has  some  char-
acteristics  different  with  Gaussian  beam,  this  theoretical  result  maybe  has  some  potential  applications
value.
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1. Introduction

Vector soliton, which includes temporal and spatial vector
soliton, has been investigated widely and made a series of achieve-
ments. For instance, Rand experimentally observe the propagation
and collision of temporal vector soliton in a linearly birefringent
optical fiber [1], Zhang studied dissipative vector solitons in a
dispersion managed cavity fiber laser with net positive cavity dis-
persion [2], Wang reported the observation of multi-component
spatial vector solitons of four-wave mixing [3]. In recent years,
the study on the propagation of spatial vector soliton in nonlo-
cal media has greatly grown. Such as, the formation of dark-bright
vector soliton pairs in nonlocal Kerr-type nonlinear medium was
analyzed by Lin [4], the existence and stability of two-component
vector solitons in nematic liquid crystals was investigated by Xu [5],
the propagation of the Polarized vector dark solitons in nonlocal
Kree-type self-defocusing media was discussed by Chen [6]. Shen
has studied the incoherently coupled two-color Manakov vector
solitons which consist of two Gaussian-shaped beams [7] and two
hyperbolic secant shaped beams [8]. Kartashov discussed multipole
vector soliton in nonlocal media [9]. Two-dimensional nonlocal
vector dipole solitons also have been found [10]. However, the
(1 + 2)-dimensional strong nonlocal SG vector soliton has not been
studied. To the best of our knowledge, only Mishra has discussed
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the propagation of single SG beams in (1 + 1)-dimensional strong
nonlocal media [11].

Furthermore, SG beam has some different characteristics. For
instance, it easy to be identified by detector owe  to its flat top and
also easy to be accommodated more numbers of pulses in less space
because of its narrow tail [11]. In recent years, the application of SG
beam has been found in several fields, such as McLaren shows that
trapping strength can be tuned continuously by adjusting the order
of a SG beam without the need for power adjustment of the laser.
Therefore, the study on the propagation of two  mutually incoherent
SG beams in strong nonlocal media maybe has actual significance.

It is worth noting that the variational approach in nonlinear
is uncontrollable (i.e. the accuracy is not predictable) and only
provides an approximate solution. However, it can be viewed as
a qualitative argument for understanding the possible numerical
finding. In this paper, we  obtain the critical power and large phase
shift of SG solitary wave by variational approach and find it accord-
ing with the numerical results well.

2. Theoretical model

The propagation of two  mutually incoherent coupled beam pairs
in (1 + 1)-dimensional nonlocal media is satisfied the following cou-
pled equations [8–12].
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where  i (i = 1, 2) are the optical beams, � = 1/2k, � = k�, k is the
wave number in the media without nonlinearity, � is a material
constant and R is a symmetrical real nonlinear spatial response
function of the media.

The Lagrange density equation, which corresponding to Eqs. (1a)
and (1b), is given as follow
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Here we look for solutions to Eq. (2) in SG-shaped
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where Ai(z) (i = 1, 2) are the amplitudes, �i(z) are the phases of com-
plex amplitudes, ci(z) are the phase-front curvatures of the beams,
ai(z) represent the beam widths and m,  n stand for the order of the
SG optical beams.

In strong nonlocal media, since the characteristic width of the
response function is larger than the initial beam width, the response
function can be expanded twice and reduced as follow [13–15]
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2
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where R0 = R(0, 0), � = −R(2, 0)(0, 0) [13,14]. By inserting the trial
function (3a), (3b) and Eq. (4) into Eq. (2) and integrating over x, we
obtain the average Lagrange which only depends on the parameters
of beams
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where � (x) is the Gamma  function, concretely, �m1 = � (1 + 1/2m),
�m2 = � (1 + 3/2m), �m3 = � (2 − 1/2m),  � n1 = � (1 + 1/2n),
� n2 = � (1 + 3/2n), � n3 = � (2 − 1/2n). The evolution equations

for the parameters of the two  beams can be obtained based on the
variational principle
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where Pi0 (i = 1, 2) are the initial powers, Ai0 and ai0 represent the
initial amplitudes and beam widths, respectively. The evolution
equations of beam widths are obtained by combining Eqs. (6b), (6c)
and (6f), (6g)
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By setting d2ai/dzi
2|z=0 = 0 (i = 1, 2), we obtain the critical power

of the vector soliton
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For such a vector soliton to exist, the total initial power should
be equal to the critical powers, namely P0 = (P10 + P20) = Pc1 = Pc2.
Therefore we obtain that the ratio of the initial beam widths should
be equal to a certain value which depends on the orders of the two
SG beams
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3. The numerical results

Assuming the response function is Gaussian-shaped
R(x, y) = (1/	
2) exp [−(x2 + y2)/
2], we can employ the split-
step Fourier method to simulate the propagation of two mutually
incoherent coupled SG beam pairs in strong nonlocal media.

Where X = x/a10, yi = ai/a10 (i = 1, 2) are the normalized beam
widths, Z = z/ka10

2 is the normalized propagation distance.
Fig. 1(a) and Fig. 2(a) depict the normalized intensity distribu-

tion and widths of the Gaussian beams which propagate in strong
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