Optik 126 (2015) 5092-5099

journal homepage: www.elsevier.de/ijleo

Contents lists available at ScienceDirect

Optik

Variational optical flow computation assisted by robust point

matching

Jinlong Shi*, Suqin bai, Xin Shu

@ CrossMark

School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

ARTICLE INFO ABSTRACT

Article history:
Received 1 November 2014
Accepted 11 September 2015

Keywords:

Motion estimation
Optical flow
Variational

Point matching

Lots of optical flow methods are based on coarse-to-fine strategy. However, most of coarse-to-fine optical
flow techniques face two important problems: namely (1) large displacements of small structures are
usually estimated in an incorrect manner and (2) large affine motions of non-rigid objects cannot be
computed accurately. In this paper, we present an optical flow computation methodology that integrates
robust point matching into a variational optical flow model to deal with the above-mentioned difficulties.
Experimental results are demonstrated for a variety of image sequences to validate the effectiveness.
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1. Introduction

Optical flow is of great importance for motion detection in the
visual system of humans and other visual species [1]. It is also very
important for many computer vision fields, such as object tracking
[2], motion segmentation [3] and medical image registration [4].

So far, optical flow techniques have been studied for several
years. Many of the contemporary optical flow methods are based
on the variational framework introduced by Horn and Schunck
[5] and the coarse-to-fine refinement strategy presented by Lucas
and Kanade [6]. Currently, almost all of the top-ranked approaches
in the Middlebury benchmark make use of this combination of
variational framework and coarse-to-fine strategy [7]. On the one
hand, variational methods provide accurate techniques for small
displacement computation [8-10]. On the other hand, coarse-to-
fine strategies, which almost have become the de-facto standard in
optical flow computation, provide the ability of dealing with large
displacements [8,10,11]. However, there exist some difficulties in
traditional strategies during handling large displacements of small
structures. For example, incorrect estimation for small structures
with large motions: at the coarse scales, small structures are no
longer visible, thus the motions of small structures are usually
estimated by the motions of nearby large structures, which may
result in errors when the relative motion of a small structure is
larger than its own scale. Furthermore, almost all of the optical
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flow methods do not consider affine transformation in the large
motions of non-rigid objects.

In order to solve the above-mentioned problems, some recent
researches try to integrate the reliable local feature matching into
traditional optical flow algorithms. In contrast to single pixels only
with gray value, local feature descriptors are more suitable for accu-
rate global matching due to the uniqueness of descriptors. This type
of descriptor matching techniques, which can obtain sparse corre-
spondences for large displacements in image matching, has been
widely applied in lots of fields. However, there may exist outliers in
point correspondences due to the missing of regularity constraints
of matching points. Considering the characteristics of both optical
flow and feature point matching, to construct a more robust opti-
cal flow method that can deal with large displacements, we may
combine the ability of feature descriptor matching to generate lots
of correct large displacement correspondences with the ability of
variational techniques to efficiently produce highly accurate, dense
motion fields without outliers.

There are some literatures, called descriptor-based methods in
this paper, which combine the advantages of traditional optical
flow with feature descriptor matching techniques. This combina-
tion can guide the optical flow computation of small structures
with large displacements in the right direction. For example, [12]
presents a method in which large motions are estimated based on a
correlation term and integrated into a variational model. The work
in [13], which can reduce the reliance of flow estimates on their
initial values propagated from the coarse level and enable recov-
ering many motion details in each scale, integrates the feature
matching into an energy minimization framework. Liu et al. [14]
computes dense correspondences between two different scenes
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by computing dense field of SIFT descriptors and optimizing via
belief propagation. Stoll et al. [11] proposes a three-step adaptive
feature points selection strategy by which feature matches that
may potentially improve the optical flow estimation are integrated
into the variational optical flow. Leordeanu et al. [15] presents a
sparse-to-dense matching method that starts from the higher level
of sparse matching with rich appearance and geometric constraints
collected over extended neighborhoods. Weinzaepfel et al. [16]
proposes an optical flow method that allows to boost performance
on fast motions by using descriptor matching algorithm. Another
related work is [ 17] which combines the advantages of both varia-
tional energy minimization methods and region correspondences.
The very related work is the technique presented by [1], where
the method can acquire accurate optical flow by integrating rich
descriptors into the variational optical flow framework.

Though some literatures have combined traditional optical flow
algorithms with feature descriptor matching techniques, there still
exist some problems. On the one hand, although some of the exit-
ing methods can obtain good results for large displacement, few
researches take the large affine motion into account. On the other
hand, incorrect matches may lead to large errors of optical flow
estimation in existing descriptor-based methods.

To overcome the above-mentioned difficulties, we present a
novel method which is close to the work in [1,18], and the main
difference of our work is that a robust point matching technique is
adopted to assist the variational optical flow computation. The con-
tributions of this paper are as follows: (1) We propose a robust point
matching technique to generate dense point correspondences. (2)
We present a method by integrating the robust point correspon-
dences into a variational optical flow model, where we use the
similar variational framework to the work [1,18], but we can obtain
more accurate results both for small and large displacements com-
pared with similar works. (3) Our method is more suitable to
deal with affine motion due to the using of affine transformation
hypothesis during robust point matching in contrast with similar
works.

2. Variational model of optical flow

We here let I; and I, denote the first and the second image to
be aligned, let x:=(x, y)T be a point in the image domain, and let
w = w(x) := (u, v)| represent the optical flow field. We adopt a
robust variational optical flow framework similar to that used in
[1,18], but lots of changes are made:

E(wW) = Ecolor(W) + VEgrad(w) + 0Esmooth (W) + Encc(W1)
+ BEmatch(W, W) (1)

where E,,(W) is a color or gray consistency assumption:
Ecolor(W) = / Y(lL(x+w) -1 (X)|2)dX (2)
Q

Here, we use ¥/(s2) = 1/s2 + €2, € = 0.001, which allows to cope
with occlusions and large displacements.

Egrqq(w) denotes gradient constraint which supplements the
gray consistency constraint Eq,j,(W):

Egraa(W) = / (VL (X +w) — VI (x)1*)dx (3)
Q

Esmootn(W) is the smooth term by which ambiguous solutions
can be avoided:

Esmoocn(W) = / W(|VU(X)|2 + \VI}(X)|2)dX (4)
Q

The combination of Ecor(W), Egrqa(W), and Egpooin(W) is the
general optical flow form [1], by which large displacements can
be estimated. However, this general form does not consider the
motions of small structures due to the using of coarse-to-fine
framework. Therefore, in order to accurately measure the motions
of small structures, we here extract more robust point corre-
spondences and neglect the matching points’ regularity constraint.
Matching points without a regularity constraint can be performed
efficiently using current descriptor matching techniques in a glob-
ally optimal manner, which can be formulated as another energy
term:

Encc(W1)=/5(X)(1—|,0(X)\2)dx (5)
Q

In this term, wy is the correspondence vectors to be obtained.
p(x)=NCC(x+wyq, X) is the matching score of each correspondence,
where NCC(-, -) denotes the function of NCC (Normalized Cross
Correlation).

Next, we integrate the matched points into the variational
approach by adding another term:

Ematcn(W, W) = / 8(x)p(X)E(X)Y(Iw(x) — wy (x)1?)dx (6)
Q

where §(x)is 1 if there is a correspondence available at pointxin/;;
otherwise it is 0. Each correspondence is weighted by its matching
score p(x). Because a feature point located at an edge is unreliable,
we here identify unreliable locations where feature matches would
potentially lead to outliers. Therefore, we adopt an edge function
¢(x), if point X is located at an edge, ¢(X) is set to 0; otherwise it is
1. To obtain ¢(x), Canny edge detector [19] is adopted.

3. Minimization

Since Eq. (1) is a highly non-convex function, reasonable mini-
mization schemes are needed to find a good solution.

Similar to that work in [1], the part of point matching, namely
Eq. (5), can be decoupled from Eq. (1) and solved independently
via direct matching. It is a discrete optimization problem to min-
imize Eq. (5) with respect to wy. Due to the missing of regularity
constraint of point correspondences in Eq. (5), we can optimize it
independently.

Therefore, two steps are used to minimize Eq. (1): Firstly, we
independently solve Eq. (5) by using robust point matching method
introduced in Section 3.1; secondly, we minimize the remainder of
Eq. (1) by the method described in Section 3.2.

3.1. Robust point matching

Here, our aim is to extract more robust point correspondences
used to assist the optical flow computation by minimizing Eq.(5) via
discrete optimization. We introduce a sparse-to-dense technique
to perform this task. This technique includes two steps: extracting
some reliable point correspondences as seeds, and expanding from
the seeds to obtain dense matching points between two images
[20]. We here adopt a region expansion technique to perform point
matching because region expansion techniques have been vali-
dated to be very robust in lots of applications [21,22,20].

Before elaborating the robust point matching method, we first
introduce a photometric discrepancy function which will be used
later.

3.1.1. Photometric discrepancy function

We assume there exists affine transformation between an
image patch P; in I; and its corresponding patch P, in I,. Under
this assumption, we design a local energy function in which the
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