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a  b  s  t  r  a  c  t

A  robust  two-dimensional  (2D)  formulation  for  the  electrical  characterization  of  nematic  liquid  crystals
(N-LCs)  under  low-frequency  (LF)  AC biasing  conditions  is  proposed.  The  finite-difference  (FD)  method  is
first implemented  to  solve  Poisson’s  equation  in the domain  of  interest  in  order  to  obtain  the  governing  LF
electric  field,  which  affects  the  local  dielectric  properties  of  the  anisotropic  material.  Then,  the  nonlinear
Euler–Lagrange  partial  differential  equation  (PDE),  governing  the  orientation  of the  directors,  is  solved
using  one  of three  FD schemes  with  relaxation  proposed  in  this  paper.  Once  the  N-LC  layer  is characterized,
the  average  refractive  index  as  a  function  of  the  x-coordinate  is  calculated  assuming  a  normally  incident
monochromatic  laser  beam.  The  results  are  compared  with  published  data  in the  literature  obtained
using  a  finite  element  method  (FEM).  Solution  of  the  PDE  governing  the orientation  of  the directors  in  a
non-uniform  2D  electric  field  is  obtained  using  either  strong  anchoring  or soft  anchoring.  An  investigation
of  the  effects  of boundary  conditions  on  the  average  refractive  index is  presented.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Liquid crystals are widely used in thin-film transistor (TFT) liquid crystal displays (LCDs) due to their attractive electro-optical prop-
erties [1]. As a result, TFT-LCD’s completely replaced traditional cathode ray tubes (CRTs) in commercial applications. High-resolution
displays though require pixels of small size, thus creating a strong fringing field near the edges of adjacent coplanar electrodes. This highly
inhomogeneous low-frequency electric field with strong fringing effects near electrode edges creates disclination lines or defects which
adversely affect the overall performance of the display. Specifically, the presence of disclination lines near electrode edges disturbs the
electro-optical properties of the liquid crystal, thus reducing the contrast ratio and brightness of the display. The location of disclination
lines is affected by the anisotropy of the crystal and the elastic constants [2]. Consequently, it is essential that accurate and computationally
efficient numerical techniques are used for the characterization of LC’s in the presence of a non-homogeneous low-frequency electric field.

Different numerical techniques have been proposed in recent years for modeling of LC’s under a low-frequency bias electric field. The
most common approach is to formulate an iterative process where the electric potential is solved for a given structure, and then, by using
the obtained electric field distribution, one can solve for the directors’ tilt angle in the domain of interest. A 2D hybrid finite element/finite
difference numerical method based on a tensor formulation was used for the analysis of N-LC’s cells in the presence of interdigital electrodes
[3]. An improved steady-state analysis based on a finite-element formulation of the free-energy functional was implemented successfully
for the analysis of 2D and 3D LC structures in the presence of a low-frequency field [4,5]. A similar finite-element approach was also
implemented for the characterization of electromagnetic wave propagation in LC structures, at millimeter-wave frequencies, in the presence
of a quasi-static electric field [6–8]. A Galerkin’s FEM approach was  also used to simplify the highly nonlinear governing equation in order
to model the dynamic behavior of LC directors in complex structures [9]. A number of other numerical methods have been extensively
used throughout the years for the analysis of LC’s in the presence of an applied bias field.

Here, we propose an alternative numerical technique based on an iterative process where the electric potential and the director field
are solved successively until convergence is reached. Solution of the directors’ tilt angle in the domain of interest is obtained using one
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Fig. 1. Geometry of the a liquid-crystal cell showing the orientation of the directors with respect to the horizontal axis.

of three FD schemes with relaxation. The relevant FD schemes operate on the nonlinear PDE obtained using the Euler–Lagrange equation
that minimizes the Oseen-Frank free energy functional [10]. The approach was implemented for a 2D problem, but can be extended to a
generic three-dimensional (3D) structure.

2. Governing equations

The dielectric properties of the N-LC layer are directly related to the orientation of the directors inside the crystal. Under the assumption
of z-invariance and in the absence of twist, the director orientation is defined by a unit vector in the xy-plane given by n̂ = (cos �, sin �, 0),
where the tilt angle � is measured from the positive x−axis, as shown in Fig. 1. The response of the directors inside the crystal in the
presence of a low-frequency electric field is governed by the Oseen-Frank free energy functional given by

F  = 1
2

∫ [
k11(∇ · n̂)2 + k22[n̂ · (∇ × n̂)]2 + k33|n̂ × (∇ × n̂)|2 − �0

[
��(n̂ · �E)

2 + �⊥|�E|2
]]

d3r, (1)

where k11, k22, and k33 are the splay, twist and bend elastic constants of the crystal, and �E = (Ex, Ey, Ez) is the electric field; �� = �‖ − �⊥,
where �‖ and �⊥ are the relative permittivities of the crystal in the directions parallel and perpendicular to the director, respectively.

The functional F  in Eq. (1) can be minimized using the Euler–Lagrange equation
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and �x : = ∂�/∂x and �y : = ∂�/∂y. Substituting (3) into (2), and manipulating the resulting terms yields
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The low-frequency (quasi-static) electric field in the structure is governed by Poisson’s equation in a charge-free region:

∇ · (�̂∇V) = 0, (5)

where �̂ is the relative permittivity tensor of the non-homogeneous crystal given by
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and

�xx = �⊥ + ��cos2�(x, y), �xy = �yx = �� sin �(x, y) cos �(x, y), �yy = �⊥ + ��sin2�(x, y), �zz = �⊥. (6b)

Utilizing (5, 6) and assuming z-invariance, we obtain the equation governing the electric potential inside the LC:
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The electric field at a point in the crystal is computed by taking the gradient of the electric potential. The coupled system of equations
(4, 7) will be solved iteratively until convergence is reached.
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