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a  b  s  t  r  a  c  t

We  have  made  an  attempt  to  present  a  fairly  analytical  solution,  in order  to  provide  a compact  source
for  such  solution  for researchers  who  need  to  evaluate  six  wave  optical  parametric  amplifiers  (OPA)  per-
formance.  We  have  also  presented  complete  derivations,  so  that  the  researchers  can  follow  them  step
by  step  and  thereby  gain  physical  and  mathematical  insight  into  the  origin  of the  solutions.  We  begin
by  using  Maxwell’s  equations  under  third  nonlinear  effects  on  which  fiber  OPAs  are used  to  derive  com-
plete  coupled  wave  equations.  For six  waves  OPA  we also  describe  some  of  their  fundamental  properties
resulting  from  energy  conservation,  as  well  as the  quantum  features  of  four wave  mixing  (FWM)  interac-
tions.  Finally  we  have  presented  analytical  solutions  followed  by  simulation  results  for  six  coupled  wave
equation  for  certain  conditions.
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1. Introduction

In this paper we introduce the six waves fiber optical parametric
amplifier (OPA) and a simple analytical model to study their char-
acteristics. We  have confined ourselves to situation in which all
the waves are launched into the fiber with the same linear state
of polarization (SOP) and remain in that state along the entire
fiber [1,2]. This allow us to consider a single component of elec-
tric field and hence to write scalar equation for it. In Section 2,
we first set up the basic OPA equation starting Maxwell’s equa-
tions for the case of non polarization. In this process we  derive
an expression for the fiber nonlinearity coefficient � in terms of
waveguide properties and those of the interesting mode. In Section
3, we then proceed with the solution of the six wave OPA equations
in a variety of situation for which exact solution are known. The
solutions in the absence of loss and pump depletion are relatively
simple. They are used extensively in practice as a first approxima-
tion to calculating the gain spectra of various fiber OPAs. Solutions
in other regimes are more complicated. While it is more difficult
to grasp their properties, they can be useful computational tool
for obtaining accurate result when the analytical solutions are not
applicable.
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2. Analytical derivation of the six wave OPA models

In the literature researchers were mostly restricted the atten-
tion to the interaction between four waves only, namely, the two
pumps, the signal, and the idler. In practice this can be well approx-
imated by placing the pump and the signal approximately with
respect to each other and to the zero dispersion wavelengths. Under
these circumstances, these four waves carry most of the power over
the entire fiber and other waves arising from four-wave mixing are
poorly matched and remain at negligible levels [3]. Under certain
circumstances, however, some of these other waves may  be well
phase matched and so may  reach level comparable with the sig-
nal and the idler. In such situation one must take these waves into
account to obtain an adequate description of the situation [4]. An
example of such a situation occurs with a two-pump OPA when the
signal is close in frequency to one of the pumps as shown in Fig. 1.
Then two  new waves appear, located at ω5 and ω6. The origin can
be understood as fallows.

Since the signal is close to pump 1, efficient four-wave mix-
ing (FWM)  between these two  waves generates the wave at ω5,
which is symmetric to the signal with respect to the pump, i.e.
we have ω3 + ω5 = 2ω1. Similarly, since idler 1 is close to pump
2, efficient FWM  between these two waves generates the wave
at ω6, which is symmetric to idler 1 with respect to pump 2,
we have ω4 + ω6 = 2ω2. Since ω3 + ω4 = 2ωc = ω1 + ω2 we  also have
ω5 + ω6 = 2ωc, this shows that the two new idlers are themselves
coupled by the two-pump OPA process. Furthermore, we also have
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Fig. 1. Frequency assignment for a two-pump OPA, with two sidebands round each
pump.

ω4 − ω5 = ω6 − ω3 = ω2 − ω1, which indicates that the signal and the
third idler are coupled by a wavelength-exchange type of interac-
tion, as are the first and second idlers [5–7]. Because of all these
tight coupling when the signal is close to pump, the signal and the
idler can grow together, with gains that are similar. The six wave
are coupled by the following equation wave equation [8],

∇2E − 1
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∂t2
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∂2P

∂t2
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and we know the relation between E and P as
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From Eqs. (1) and (2)
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Computation of last term in above equation is as follow
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Since E2 = EE∗ =
∣∣E∣∣2 which is independent of time hence

∂E2/∂t term vanishes in above equation than
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We now consider the case where �(3) /= 0 and E consist of six fre-
quency components, which satisfy the above conditions. We  write
the total real electric field as [9–12]
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From Eqs. (5), (6) and (9)
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Now by using the following identity
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