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a  b  s  t  r  a  c  t

The  iterative  Fresnel  integrals  method  (IFIM) has  been  applied  for  the  simulation  and  generation  of  the
complete  near-field  Fresnel  diffraction  images  created  by N-apertures  for the  first  time.  The  simulation
can  be performed  in any  PC using  a  MATLAB  program  developed  by the  authors.  Necessary  formalism
was  derived  for the  general  N-slit  problem,  and a  simulation  algorithm  was  devised  for  this  application.
An  interesting  combination  of  interference  effects  with  Fresnel  diffraction  was  observed  in  the  simulated
images.  Transition  to the  expected  Fraunhofer  diffraction  pattern  from  Fresnel  diffraction  for N-apertures
is  also  observed  in the simulations  under  the  appropriate  conditions.  Principal  maxima  of  the  expected
Fraunhofer  diffraction  were  observed  at their  expected  positions,  as well  as  the  expected  minima  and  the
secondary  maxima.  The  program  can  serve  as  a useful  tool  to study  the  complex  phenomenon  of  Fresnel
diffraction  from  N-apertures,  and  in  addition,  to study the  near-field  Fresnel  diffraction  from  amplitude
diffraction  gratings.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

In Optics, diffraction is a subject of crucial importance, both
from theoretical and experimental points of view [1–3]. Diffrac-
tion phenomena can be grossly classified into two  types, namely:
Fresnel and Fraunhofer. Of these two, the Fresnel or near-field
diffraction is relatively more complicated than the Fraunhofer, or
far-field diffraction. No exact analytical solution of Fresnel diffrac-
tion can be found even in the simplest cases. For example, even
for a simple rectangular or circular aperture, no analytical solution
can be obtained for Fresnel diffraction. In this case, a solution of
the required two-dimensional diffraction integral can be obtained
in terms of non-analytical integrals known as the Fresnel cosine
and sine integrals [2,3], each involving one-dimensional variables.
Even then, visualizing the complicated Fresnel diffraction pattern
in terms of the Fresnel integrals can be a difficult task. Usually some
visualization tools, such as the Cornu Spiral, are necessary, and even
if it used, the complicated diffraction pattern observed is not easy to
explain and interpret [2]. It is difficult to predict how the complex
and intricate diffraction images will change with a change of exper-
imental conditions, such as aperture–screen distance or aperture
dimensions.
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We previously introduced [4,5] a new method of calculation of
the complete Fresnel diffraction pattern from rectangular-shaped
apertures by the iterative Fresnel integrals method (IFIM). The
technique has been applied to a single rectangular aperture [5],
double apertures and its derivatives [6], triple apertures [7] and
the tilted aperture [8]. The usual methods of calculation of Fresnel
diffraction from apertures generally employ several types of two-
dimensional fast-Fourier transform (FFT)-based algorithms [9–12].
These algorithms are relatively fast and efficient, and can be applied
to apertures of any shape. An FFT-based algorithm to calculate Fres-
nel diffraction by first computing Fraunhofer diffraction image has
been proposed recently [13]. Several numerical calculation routi-
nes for Fresnel diffraction using FFT have been implemented in the
graphics processing unit (GPU) in a computer [14]. While these FFT-
based methods are very powerful, using them delegates the entire
computation process to the computer, and provides little or almost
no insight to the computation process itself [5]. The calculation pro-
cess is essentially a black box: No existing symmetry properties of
the aperture is used to simplify the computation process, nor any
attempt is made to a separate the diffraction integral into functions
involving one-dimensional variables, as in the case of the Fresnel
cosine and sine integrals, as mentioned previously.

In contrast, the IFIM method uses repeated calculation of Fresnel
cosine and sine integrals and virtual displacements of the aperture
[5]. The method provides a very intuitive method of calculation
of the diffraction pattern, and two-dimensional images can be
directly generated by the method in any arbitrary experimental
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configurations, such as for any given aperture size, illumination
wavelength, and aperture–screen distances. In the IFIM technique,
the effect of changing any one parameter (such as aperture–screen
distance) on the diffraction image, while all other parameters
remain fixed, can be easily observed. The IFIM algorithm was  imple-
mented in MATLAB, and the codes can be executed in any PC or
laptop computer in a reasonable amount of time, with execution
times less than a minute in most cases. Implementation of the
codes in other languages, such as Mathematica or MathCad is also
possible.

The generalization of the iterative Fresnel integral method to
N-apertures or slits is not a trivial task. In the calculation of Fres-
nel integrals for the case of the single, double or triple apertures,
the number of Fresnel arrays is fixed. This is not true for the gen-
eral N-slit problem, where the number of Fresnel integrals itself
depends on the number of slits N, and a simple scaling or expansion
of the algorithm to N slits in not possible. A different computational
approach is needed in this case.

The N-slit problem is extremely important in optics, since
the N-slit can basically serve as an amplitude diffraction grating,
which is used in many optical systems, such as spectrographs and
spectrometers. Therefore, apart from any theoretical interest, the
computation of Fresnel diffraction for the general N-slit problem
provides a greater insight in the operation of these devices, as
diffraction effects can limit the resolution achieved in an optical
system.

In this paper, we apply the IFIM technique to a general N-slit
system. We  first derive the basic equation to describe the elec-
tric field or intensity due to the N-aperture, and then formulate
the detailed algorithm for the computation process. The algorithm
is then implemented in MATLAB. We  present output images from
the MATLAB program for typical cases of the N-aperture problem.
Finally, discussions are made and conclusions are drawn in the final
sections.

2. Theory of N-slit for the IFIM method

To understand the underlying theory of Fresnel diffraction from
an N-aperture, let us first consider the simpler case of a single
aperture. Light of wavelength � emitted from a point source S is
diffracted by a rectangular aperture of dimensions a × b located at
a distance p0 from it (Fig. 1). The light diffracted from the aperture is
observed on the observation plane (or screen) placed a distance q0
away. The coordinate systems on the aperture and on the image

Fig. 1. Basic configuration of Fresnel diffraction from a rectangular aperture of
dimension a × b.

planes are chosen, for convenience, to be centered on the opti-
cal axis passing through the center of the aperture and orthogonal
to it, and are indicated by (y,z) and (Y,Z) axes, respectively. The
Huygens–Fresnel principle is then used to calculate the total elec-
tric field at any given point of the image plane (Y,Z) by summing
up all the contributions (taking into account both amplitude and
phase) of all the elementary Huygens wavelets emitted by different
area elements inside the rectangular aperture.

By integrating the contributions of the Huygens wavelets over
the area dS over the area of the whole aperture, it can be shown
[2,3] that the total complex electric field at P is

EP = Eu

2
[C(u) + jS(u)]u2

u1
[C(v) + jS(v)]v2

v1
(1)

where Eu is the unobstructed electric field at P (i.e. the electric field
that would have existed if the aperture were absent), and C(u) and
S(u) are the Fresnel cosine and sine integrals, defined by,
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In the above, w represents either of the two  dimensionless vari-
ables u or v, being defined as,

u = y

√
2(p0 + q0)

�p0q0
, v = z

√
2(p0 + q0)

�p0q0
. (3)

The variables u and v are clearly proportional to the Cartesian
coordinates y and z. Specifically, the limits u1, u2, v1, v2 correspond
to the values of y1, y2, z1, z2, respectively.

The intensity at P is given by the square of EP, appearing in Eq.
(1) i.e., by,

IP = I0
4

{
[C(u2) − C(u1)]2 + [S(u2) − S(u1)]2}  {

[C(v2) − C(v1)]2

+[S(v2) − S(v1)]2} . (4)

Here I0 is the unobstructed intensity corresponding to Eu (I0 = Eu
2).

Let us now consider the much more complicated case of an
N-aperture. For simplicity, assume N = 2n + 1 (odd number of aper-
tures). As before in the single aperture case, we assume that the
N-aperture system is centered on the yz coordinate system, i.e. the
origin of the coordinate system O is located at the exact center
of the N-aperture (Fig. 2, shown for N = 5). Let a be the individual
aperture width, b be the inter-aperture separation (the center-to-
center aperture separation being (a + b)), and c be the aperture
height in the z-direction. The two  edges of the central aperture
of the N-aperture system (called aperture 0) are then located at
y0 = −a/2 and y0

′ = a/2, respectively, and the edges of the aper-
ture for the next aperture to the right (called aperture +1) are
located at y1 = a/2 + b and y1

′ = 3a/2 + b, respectively. The next aper-
ture to the right (called aperture +2)  are located at y2 = 3a/2 + 2b and
y2

′ = 5a/2 + 2b. Finally the edges of the aperture +n will be located
at yn = (2n  − 1)a/2 + nb and yn

′ = (2n + 1)a/2 + nb. Similarly, the edges
of the first left aperture (aperture −1) are located at y−1

′ = −a/2 − b
and y−1 = −3a/2 − b. Finally, the edges of the aperture −n will be
located at y−n

′ = −(2n  − 1)a/2 − nb and y−n = −(2n  + 1)a/2 − nb.
Under illumination from the source, the total electric field at the

center P of the image plane consists of the contributions from all
of the (2n  + 1) apertures. The electric field contribution from the
aperture 1 is given, in analogy to Eq. (1), by

EP1 = Eu

2
[C(u) + jS(u)]u1

′
u1

[C(v) + jS(v)]v′
v . (5)
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