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modes.  The  numerical  simulation  shows  that  compared  with  the  linear  case,  Kerr-nonlinearity  brings
about  richer  modes  and  higher  lasing  thresholds.
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1. Introduction

The combination of multiple scattering with an optically ampli-
fying media may  cause the phenomenon known as random lasing.
Unlike a conventional laser, a random laser is an optical device
that does not produce a collimated beam of radiation, but instead
emits isotropic laser-like light. Such behavior was first theoreti-
cally predicted by Letoknov in 1968 [1], who proposed that the
incorporation of strong successive scattering events into an opti-
cally amplifying media would result in spectrally narrow, spatially
diffuse, intense stimulated laser-like light emission. Following this
initial work, Lawandy et al. [2] observed laser-like emission in an
optically pumped mixture of Rhodamine 640 perchlorate dye in
methanol and TiO2 nano-powers. Since that time, random lasers
have been reported in diverse systems such as low refractive index
polymers [3], rare earth doped dielectric powders [4], high index
semiconductor material such as GaAs, GaAsN and ZnO [5–7]. It is
noting that Liu et al. [8] have demonstrated both experimentally
and numerically that Kerr nonlinearity modifies emission inten-
sity, frequency, pulse duration and size of random lasing modes in
disordered medium made of ZnO.

In this work, I devote to investigate the Kerr nonlinear effect
on the threshold gain behavior of random lasing in disordered
medium. An auxiliary differential equation finite-difference time-
domain (ADE-FDTD) method coupled with the rate equation
in a four-level energy structure and the equation of motion of
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polarization was  employed. The numerical simulation shows that
the central frequencies of the modes for both linear and nonlinear
scatterings are only slightly different, whereas threshold of ran-
dom lasing in nonlinear scattering case is higher than that in the
linear case. Further analysis demonstrates that with pumping rates
increasing, the frequencies for the linear case remain the same
while the excited modes for the nonlinear case shift to shorter
wavelength with pumping rates increasing until a minimum value
and there exist more excited modes in the whole spectra.

2. Theoretical model

In this section, detailed numerical procedure will be given. For
simplicity, the gain and scattering component are separated in our
system. The 1D Random medium is a dielectric medium made
of two  dielectric slabs, as plotted in Fig. 1. The white and black
layers describe the gain and scattering layers, respectively. The
random thickness and dielectric constant of the gain layers are
an and ε1 = ε0, respectively. The random thickness is defined as
an = a(1 + w�), where w is the strength of randomness, a = 180 nm
and � is in the range of −0.5 to 0.5. In order to simulate the non-
linear or linear scattering layers, two scattering medium models
are selected, respectively. The Kerr nonlinear materials are charac-
terized by the nonlinear polarization while the permittivity of the
linear material is chosen as a constant ε2 = 9ε0. The thickness of the
scattering layers is a fixed value b = 300 nm.

In the Subsection, numerical procedures for the ADE-FDTD anal-
ysis of lasing dynamics for gain and scattering medium will be
given, respectively.
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Fig. 1. Schematic illustration of 1D random medium.

2.1. Optical gain material

For optical gain and non-magnetic medium, here we deal with a
1D system, where the time-dependent EM field propagating along
the z-axis is simulated using Yee’s FDTD algorithm to solve the
following Maxwell’s equations:

∂Hy

∂x
= ε0ε1

∂Ez

∂t
+ ∂Pgain

∂t
(1a)

∂Ez

∂x
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∂Hy

∂t
(1b)

where ε0 and �0 are the dielectric permittivity and the magnetic
permeability in vacuum, respectively. ε1 = 1 is the relative electric
permittivity of gain medium. Pgain is the polarization density, which
provides a gain mechanism in the laser system.

For the four-level atomic systems of the gain medium, as shown
in Fig. 2, the electron numbers at each energy level, N1(z, t), N2(z,
t), N3(z, t) and N4(z, t) obey the following rate equations.

dN1

dt
= N2

�21
− WpN1 (2a)

dN2

dt
= N3

�32
− N2

�21
− Ez

�ωl
· dPgain

dt
(2b)

dN3

dt
= N4

�43
− N3

�32
+ Ez

�ωl
· dPgain

dt
(2c)

dN4

dt
= − N4

�43
+ WpN1 (2d)

where �43 (=1 × 10−13 s), �32 (=1 × 10−10 s), and �21 (=5 × 10−12 s)
are the lifetimes at each energy levels, and Wp is the pumping rate
of electrons from ground state (level 1) to upper energy level (level
4) and is a controlled variable that should be tuned by the pumping
intensity. ωl = (E3 − E2)/�  = 7.71 × 1014 Hz (�l = 389 nm)  is the cen-
tral frequency of emission. The population densities Ni obey the
conservation equation NT =

∑4
i=1Ni = 3.313 × 1024/m3.

On the basis of the classical electron oscillator (Lorentz) model,
one can obtain the following equation of motion of Pgain in the
presence of an electric field

d2P(z, t)
dt2

+ 	ωl
dP(z, t)

dt
+ ω2

l

dP(z, t)
dt

= �r

�c

e2

m
	N(z, t)E(z, t) (3)

where 
ωl = 1/�21 + 2/T2 is the full width at half-maximum
(FWHM) linewidth of the atomic transition, T2 (=2.14 × 10−14 s) is
the mean time between dephasing events, 
N(z, t) (=N2(z, t) – N3(z,
t)) is the difference between electron numbers at levels 2 and 3,
�r = 1/�32, �c = (e2/m)[ω2

l
/(6�ε0c3)] is the classical rate, e is the

electron charge, m is the electron mass and c is the speed of light
in vacuum.

Fig. 2. The scheme of energy levels for gain medium.

2.2. Scattering medium

In the linear and Kerr-nonlinear scattering medium, Maxwell’s
equations may  write

∂Hy(t, x)

∂x
= ∂Dz(t, x)

∂t
, (4a)

∂Ez(t, x)
∂x

= �0
∂Hy(t, x)

∂t
, (4b)

Dz(t, x) = ε∞ε0Ez(t, x) + PL(x, t) + PNL(x, t) (4c)

where PL and PLN are the linear and nonlinear polarization density
in z direction respectively. Since PL = ε0�(1)E, the linear dielectric
constant is εL = ε∞ + �(1). For simplicity, εL is selected as a constant
ε2 = 9. Therefore, we may  obtain from Eq. (4c):

Dz(t, x) = ε2Ez(t, x) + PNL(x, t) (4d)

In the scattering layers with Kerr nonlinearity, we
introduced the nonlinear polarization density PNL(x, t) =
ε0�(3)E(x, t)

∫ ∞
−∞ g(t − �) × |E(x, �)|2d�,  where �(3) is the non-

linear coefficient and g(t − �) = (1/�0) exp(− (t − �)/�0). �0 is the
nonlinear response time, is the casual response function. The
third-order nonlinear coefficient �(3) of ZnO at room tem-
perature range from 10−16 to 10−14 m2/V2. In this work, its
value is selected as 2 × 10−15 m2/V2. Note that by setting the
values of �(3), we  may  simulate linearity and Kerr nonlin-
earity in the scattering medium. In order to introduce the
nonlinearity into the ADE-FDTD, Ref. [8] gives a new function
G(x, t) =

∫ ∞
−∞ g(t − �)|E(x, �)|2d� = (1/�0)

∫ t

0
e−(t−�)/�0 |E(x, �)|2d�.

By the use of time differencing for G(x,t), we can obtain

dG(x, t)
dt

= −G(x, t)
�0

+ |E(x, �)|2
�0

(5)

In the above equation, E can be given in the following

E(x, t) = [D(x, t) − PNL(x, t)]/ε2 (6)

where PNL(x, t) = �(3)G|E|2. In order to assure numerical stability to
the FDTD procedure, the space and time step are 	x  = 	y = 10 nm
and 	t  = 	x/(2c) ≈ 1.67 × 10−17 s, respectively (Fig. 2).

3. Numerical results

For nonlinear scattering medium, we  firstly performed the cal-
culation of the spectral intensity under different pump rates, as
seen from Fig. 3. Meantime, modes �N0, �N1, and �N2 are three long-
life lasing modes respectively. Note that each mode is supported by
disordered medium. When the pumping rate arrives at low value

Fig. 3. Output intensity vs. the wavelength for the Kerr-nonlinear scatterings at (a)
Wp = 1 × 109 s−1, (b) Wp = 1 × 1010 s−1, (c) Wp = 1 × 1011 s−1, (d) Wp = 1 × 1012 s−1, (e)
Wp = 1 × 1013 s−1, and (f) Wp = 1 × 1014 s−1.
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