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a  b  s  t  r  a  c  t

In  this  paper,  a novel  approach  is developed  for generating  chaos  based  on  an unstable  nonlinear  system
switching  anti-control  strategy  and  constructing  heteroclinic  loops,  which  is  different  from  the  existing
linear  system  switching-based  chaotification.  To  confirm  the  existence  of chaos,  a  topological  horseshoe
of  the  proposed  switching  controlled  nonlinear  system  is further  investigated.  In  addition,  a  circuit  is  also
designed  and  implemented,  with  experimental  results  demonstrated.  Both  numerical  simulations  and
circuit  implementation  together  show  the  effectiveness  of the  proposed  systematic  methodology.
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1. Introduction

Chaos control refers to purposefully eliminating or weakening
chaotic behavior of systems through control methods when the
chaotic motion is harmful. Since the OGY method was proposed in
1990 [1], much effort has been devoted to the study of controlling
chaos. However, not all chaotic behaviors are harmful, and recent
research has shown that the distinct properties of chaos, such
as positive Lyapunov exponents, topological transitivity, quasi-
randomness, sensitively dependence on initial conditions and
system parameters, can actually be useful under certain circum-
stances, in such as liquid mixing, information processing, flexible
systems design and secret communications. Therefore, chaotifi-
cation by means of making an originally non-chaotic dynamical
system chaotic, or enhancing existing chaos, has attracted some
special attention recently [2–5].

In many existing switching chaotic systems, it is a common
practice that chaos is generated by only using linear system
switching-based strategy. For example, Li et al. presents an
approach for constructing piecewise linear chaotic system by
selecting one linear system as switching anti-control [6]. Yu
et al. use two linear systems for constructing piecewise switching
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chaotic systems, according to heteroclinic Shil’nikov theorem [7,8].
One may  ask whether or not there is a more generalized way further
to break such a limitation so as to generate chaos by means of non-
linear system switching anti-control? This paper gives a positive
answer to the question.

In this paper, different from the existing linear system
switching-based chaos generation, a more generalized methodol-
ogy is developed here for chaotification by means of making an
originally unstable nonlinear dynamical system chaotic via switch-
ing anti-control strategy. The main differences between the linear
and nonlinear system switching anti-control for chaos generation
lie in: (i) since linear systems are special cases of nonlinear sys-
tems, the presented new method is also applicable to linear system
switching anti-control in general; (ii) in phase space, the phase dia-
grams of chaotic attractors generated by linear system switching
anti-control are symmetric with respect to the vertical axis through
the origin, while that of chaotic attractors generated by nonlinear
system switching anti-control are not symmetric with respect to
the vertical axis through the origin. Furthermore, by picking a suit-
able cross-section with respect to the proposed switching-based
nonlinear system carefully, a topological horseshoe of the corre-
sponding first-returned Poincare map  can be found, confirming
the existence of chaos in the proposed switching-based nonlin-
ear system. Finally, a circuit is also designed and implemented,
with experimental results demonstrated. Both numerical simula-
tions and circuit implementation together show the effectiveness
of the proposed systematic methodology.
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Fig. 1. The phase diagram of unstable nonlinear system (1).

The rest of the paper is organized as follows. A basic unstable
nonlinear system is given in Section 2. Generating chaos via non-
linear system switching anti-control is proposed in Section 3. A
topological horseshoe of the proposed switching-based nonlinear
system is further investigated in Section 4. A circuit is designed and
implemented in Section 5. Finally, Section 6 concludes the paper.

2. A basic unstable nonlinear system

Consider a basic three-dimensional nonlinear system:⎧⎨
⎩

ẋ = az

ẏ = by + z

ż = cx + y + y2

(1)

where a = 1.6, b = −2, c = −1 are parameters. Obviously, the nonlin-
ear system (1) is unstable, with a unique equilibrium at origin O(0,
0, 0), as shown in Fig. 1.

Linearizing system (1) at O(0, 0, 0), one gets the Jacobian matrix
as follows:

J =

⎛
⎝ 0 0 a

0 b 1

c 1 0

⎞
⎠ (2)

According to (2), the corresponding eigenvalues are � = −2.3314,
� ± jω = 0.1657 ± j1.1598. Thus, O(0, 0, 0) is the saddle foci with
index 2. Moreover, their corresponding eigenvectors are given as
follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

� = �� =

⎛
⎝ 0.2110

0.9279

−0.3075

⎞
⎠

� = �R ± j�I =

⎛
⎝ 0.7845

0.1384

0.0812

⎞
⎠ ± j

⎛
⎝ 0

0.1884

0.5686

⎞
⎠

(3)

In (3), the one dimensional stable manifold ES(O) correspond-
ing to the real eigenvalue � = −2.3314 and the two  dimensional
unstable manifold EU(O) corresponding to the complex conjugate
eigenvalues � ± jω = 0.1657 ± j1.1598 at O are given by:{

ES(O) :
x

l
= y

m
= z

n

EU(O) : Ax + By + Cz = 0
(4)

where (l, m,  n) are the direction vector of one dimensional stable
manifold ES(O) with l = 0.2110, m = 0.9279, n = −0.3075, and (A, B,
C) are the direction vector of two dimensional unstable manifold
EU(O) with A = 0.0634, B = −0.4461, C = 0.1478.

Fig. 2. The heteroclinic loop in the eigenspace of system (5).

3. Generating chaos via nonlinear system switching
anti-control

For classical control theory, assume that the uncontrolled non-
linear system is unstable, by designing a switching controller, such
that the controlled system achieves stabilization or robust stability.
In contrast with classical control method, in this section, a general-
ized approach is developed for chaotification by means of making
an originally unstable nonlinear dynamical system (1) chaotic, by
using switching anti-control strategy.

Let the switching plane be S = {(x, y, z)|y = 0}. From (1), one can
construct the switching system, given by:⎧⎪⎨
⎪⎩

ẋ = a (z  − f3(x, y, z))

ẏ = b (y − f2(x, y, z)) + (z − f3(x, y, z))

ż = c (x  − f1(x, y, z)) + (y − f2(x, y, z)) + (y − f2(x, y, z))2

(5)

where f1, f2 and f3 are switching controller, and its detail math-
ematical expression is determined by the existence conditions of
heteroclinic loop in system (5).

The switching plane divided the state space into two sub-
spaces: V1 and V2, and in each subspace f1, f2 and f3 are switching
functions. Clearly, the system (5) is 2-piecewise nonlinear sys-
tem. System (5) has two equilibrium points P1 (x1, y1, z1) ∈ V1 and
P2 (x2, y2, z2) ∈ V2, they are located at opposite sides of the switch-
ing plane S = {(x, y, z)|y = 0}. Because the Jaconbian matrix of system
(5) at P1 and P2 is the same with (2), so the eigenvalues and the
eigenvectors of system (5) at P1 and P2 is the same with (3). At
the same time, the direction vector of one dimensional stable man-
ifold ES(O) and the direction vector of two dimensional unstable
manifold EU(O) is the same with (4).

Based on the above analysis, the one dimensional stable man-
ifold ES(P1) and the two  dimensional unstable manifold EU(P1) of
system (5) at equilibrium points P1 (x1, y1, z1) ∈ V1 are described
by:{

ES(P1) :
x − x1

l
= y − y1

m
= z − z1

n

EU(P1) : A(x − x1) + B(y − y1) + C(z − z1) = 0
(6)

Similarly, the one dimensional stable manifold ES(P2) and the
two dimensional unstable manifold EU(P2) of system (5) at equilib-
rium points P2 (x2, y2, z2) ∈ V2 are given by:{

ES(P2) :
x − x2

l
= y − y2

m
= z − z2

n

EU(P2) : A(x − x2) + B(y − y2) + C(z − z2) = 0
(7)

Next, according to the heteroclinic Shil’nikov theorem [9], one
can seek the conditions that the coordinates of equilibrium points
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