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a  b  s  t  r  a  c  t

Kernel  minimum  squared  error  (KMSE)  has  been  receiving  much  attention  in data  mining  and  pattern
recognition  in  recent  years.  Generally  speaking,  training  a KMSE  classifier,  which  is  a  kind of super-
vised  learning,  needs  sufficient  labeled  examples.  However,  labeled  examples  are  usually  insufficient
and  unlabeled  examples  are  abundant  in  real-world  applications.  In  this  paper,  we introduce  a semi-
supervised  KMSE  algorithm,  called  Laplacian  regularized  KMSE  (LapKMSE),  which  explicitly  exploits  the
manifold  structure.  We  construct  a  p nearest  neighbor  graph  to  model  the  manifold  structure  of  labeled
and  unlabeled  examples.  Then,  LapKMSE  incorporates  the  structure  information  of  labeled  and  unlabeled
examples  in  the  objective  function  of  KMSE  by  adding  a  Laplacian  regularization  term.  As  a  result,  the
labels  of  labeled  and unlabeled  examples  vary  smoothly  along  the  geodesics  on  the  manifold.  Experi-
mental  results  on  several  synthetic  and real-world  datasets  illustrate  the  effectiveness  of  our  algorithm.
Finally  our  algorithm  is  applied  to face recognition  and  achieves  the  comparable  results  compared  to the
other  supervised  and  semi-supervised  methods.

© 2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

In the last decades, kernel method has been receiving more
and more attention in nonlinear classification and regression. A
training example can be mapped into a high-dimensional feature
space by using kernel trick satisfying the Mercer condition [1,2] and
then a classifier can be trained in the new feature space. In most
case, the kernel trick can achieve good generalization performance.
Hence, many researchers have been studying the idea and various
methods have been proposed, such as kernel minimum squared
error (KMSE) [3], support vector machine (SVM) [4], least squares
SVM (LS-SVM) [5], kernel principal component analysis (KPCA) [6],
kernel Fisher discriminant analysis (KFDA) [7]. Among the above
methods, KMSE has received many attention due to its higher com-
putational efficiency in the training phase. However, the solution
of KMSE is not stable and affects the generalization ability [8]. Ref.
[9] has presented a novel solution method, which yields the unique
solution, by maximizing the between-class geometric margin. And
experimental results show the feasibility of the method. Ref. [10]
proposed two versions of KMSE using different regularization terms
and proved their relation to KFDA and LS-SVM.
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Nevertheless, the performance of KMSE, which is a kind of
supervised learning, relies on sufficient labeled examples to train a
good classifier (sufficient usually means that the labeled examples
can roughly represent the underlying structure of the entire fea-
ture space). In fact, labeled examples are usually insufficient while
unlabeled data are often abundant in real world. Consequently,
semi-supervised learning, which uses both labeled and unlabeled
examples to train a classifier, has become an attractive researched
topic. In semi-supervised learning, how to learn from unlabeled
examples is still an open problem. One of the most used ways
is manifold regularization. Ref. [11] proposed Laplacian regular-
ized least squares (LapRLS) and Laplacian support vector machines
(LapSVM) which both employ Laplacian regularization to learn
from labeled and unlabeled examples. Ref. [12] introduced a semi-
supervised discriminant analysis (SDA) where unlabeled examples
are used to exploit the intrinsic manifold structure through a graph
regularization. We  refer the readers to some excellent surveys
[13,14] for more details.

In this paper, we  propose a semi-supervised KMSE algorithm,
called Laplacian regularized KMSE (LapKMSE), which explicitly
reveals the manifold structure of the labeled and unlabeled exam-
ples. Our basic intuition is that two  examples are likely to be
drawn from the same class if they are close on the manifold.
In fact, the manifold is usually unknown. Hence, we construct
a p nearest neighbor graph to model the manifold and employ
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graph Laplacian to incorporate the Laplacian regularized term in
the objective function of KMSE. Based on this, the information of
labeled and unlabeled examples are exploited by Laplacian regular-
ization which smooths the labels of labeled and unlabeled examples
along the geodesics on the manifold.

The rest of the paper is organized as follows: In Section 2, we
briefly review the naïve KMSE. In Section 3, we describe our algo-
rithm in detail. Section 4 presents the experimental results on
several datasets and we will apply our algorithm to face recog-
nition. Finally, we conclude the paper and discuss some future
directions in Section 5.

2. Naïve KMSE

Let X = {(x1, y1), . . .,  (xl, yl)} be a training set of size l, where
xi ∈ R

D and yi ∈ R. For the binary classification problem, yi = −1 if
xi ∈ ω1 or yi = 1 if xi ∈ ω2. By using a nonlinear mapping function �,
a training example is transformed into a new feature space �(xi)
from the original feature space. The task of KMSE is to build a linear
model in the new feature. The outputs of the training examples
obtained by the linear model are equal to the labels

�W = Y (1)

where

� =

⎡
⎢⎢⎣

1 �(x1)T

...
...

1 �(xl)
T

⎤
⎥⎥⎦ , W =

[
˛0

w

]
, and Y = [y1, . . .,  yl]

T

According to the reproducing kernel theory [4,7], one can note
that w can be expressed as

w =
l∑

i=1

˛i�(xi) (2)

By substituting Eq. (2) into Eq. (1), we can get

K  ̨ = Y (3)

where

K =

⎡
⎢⎢⎣

1 k(x1, x1) · · · k(x1, xl)

...
...

. . .
...

1  k(xl, x1) · · · k(xl, xl)

⎤
⎥⎥⎦ and  ̨ =

⎡
⎢⎢⎣

˛0

...

˛l

⎤
⎥⎥⎦

here the matrix K is kernel matrix whose entry k(xi,
xj) = (�(xi) · �(xj)).

The goal of KMSE is to find the optimal vector  ̨ by minimizing
the objective function as follows:

J0(˛) = (Y − K˛)T (Y − K˛)  (4)

By setting the derivation of J0(˛) with respect to  ̨ to zero, we
can obtain the solution:

˛∗ = (KT K)
−1

KT Y (5)

From Eq. (5), we can find that the dimension of ˛* is l + 1 and
Rank(KTK) ≤ l. In other words, KTK is always singular. Consequently,
the solution ˛* is not unique. In the last decades, the regularization
approach [10] is often used to deal with the ill-posed problem. The
corresponding regularized objective function can be described as

J1(˛) = (Y − K˛)T (Y − K˛)  + �˛T
 ̨ (6)

where � is the coefficient of the regularization term.
By minimizing the above objective function (6), we can obtain

˛∗ = (KT K + �I)
−1

KT Y (7)

where I is an identity matrix of size (l + 1) × (l + 1).
When the optimal weight coefficients ˛* is obtained, the linear

model of KMSE can be presented as

f (x) =
l∑

i=1

˛∗
i k(xi, x) + ˛∗

0 (8)

In the testing phase, x ∈ ω1 if f(x) < 0 and x ∈ ω2 if f(x) > 0.

3. Method

In this section, we will discuss how to learn from labeled and
unlabeled examples in KMSE.

3.1. Manifold regularization

Recall the standard learning framework. There is a probability
distribution P on X × R  according to which examples are gener-
ated for function learning. Labeled examples are (x, y) pairs drawn
according to P. Unlabeled examples are x ∈ X generated accord-
ing to the marginal distribution PX of P. In many applications, the
marginal distribution PX is unknown. Related works show that
there may  be a relationship between the marginal and conditional
distribution [11]. It is assumed that if two  examples x1, x2 ∈ X are
similar in the intrinsic geometry of PX , then the conditional distri-
bution P(y|x1) and P(y|x2) are similar.  This is referred to as manifold
assumption which is often used in semi-supervised learning [14].

Given a data set X = {(x1, y1), . . .,  (xl, yl), xl+1, . . .,  xn} with l labeled
examples and u = n − l unlabeled examples. In order to exploit the
manifold structure, Ref. [11] introduced a Laplacian regulariza-
tion term by using graph Laplacian. The Laplacian regularization
is defined as

R = f T Lf (9)

where L is the graph Laplacian defined as L = D − W, and f = [f(x1),
. . .,  f(xn)]T is the output of labeled and unlabeled examples. Here D
is a diagonal matrix whose entry Dii =

∑
jWij and the edge weight

matrix W = [Wij]n×n
can be defined as follows:

Wij =
{

1 if xi ∈ Np(xj) or xj ∈ Np(xi)

0 otherwise

where Np(xi) denotes the data sets of p nearest neighbors of xi.

3.2. Laplacian regularized KMSE (LapKMSE)

In this section, we  introduce Laplacian regularized KMSE (Lap-
KMSE) which is extended from KMSE by incorporating Laplacian
regularizer into the objective function of KMSE.

By integrating the regularization term (9) into Eq. (6), the objec-
tive function of LapKMSE can be given as

Jr(˛) = (Y − GK˛)T (Y − GK˛) + �A˛T
 ̨ + �IR (10)

where

G =
[

Il×l 0l×u

0u×l 0u×u

]
, Y = [y1, . . .,  yl, 0, . . .,  0]T ,

K =

⎡
⎢⎢⎣

1 k(x1, x1) · · · k(x1, xn)

...
...

. . .
...

1 k(xn, x1) · · · k(xn, xn)

⎤
⎥⎥⎦
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