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a  b  s  t  r  a  c  t

The  graded  index  (GRIN)  lens  reduces  the  divergence  angle  of  the  beam  exiting  from  the  lead-in  optical
fiber,  which  results  in  the  increasing  of  F–P cavity  mirror  areas.  Surface  errors  of  the increased  mirrors
cannot  be ignored  due  to the  machining  tolerance.  The  influence  of surface  errors  on the  performance
of  the  fiber  extrinsic  Fabry–Perot  interferometer  (EFPI)  is researched.  Theoretical  analysis  and  numerical
simulation  results  demonstrate  that surface  errors  will  diminish  the  interference  contrast.  The  larger  the
surface error,  the smaller  the interference  contrast  will become.  The  results  will contribute  to  the  design
of  an  EFPI  with  a certain  interference  contrast.

© 2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Optical fiber EFPI have many advantages, such as immunity to
electromagnetic interference (EMI), high resolution, small size, and
structural ruggedness, so in recent years they are used to measure
the parameters of pressure [1,2], strain [3], temperature [4], dis-
placement [5], ultrasound [6], magnetic field [7], partial discharge
[8], and refractive index [9]. A simple method to fabricate an EFPI
sensor is packaging two cleaved optical fibers into a capillary tube,
leaving an air gap between the two fiber endfaces. Reflections of
light from the two cleaved fiber surfaces form an interference sig-
nal that can be recorded and processed to find the cavity length.
When used as a sensor, the cavity length changes as a function of
the parameters to be measured.

Although the EFPI sensor fabricated by using two cleaved optical
fibers is straightforward and cost effective, it has the interference
contrast decreasing rapidly as cavity length increases due to the
large divergence (about 6◦ for single mode fiber (SMF)) of the beam
exiting from the lead-in SMF. The decreasing interference contrast
could result in a reduced SNR and decreased measurement accuracy
[10]. Thus, the EFPI is restricted to the applications where a long
initial cavity length or large dynamic range is required.

To improve the interference contrast in a long cavity EFPI,
Gangopadhyay et al. fabricated an EFPI using a coated GRIN lens
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pigtailed to the lead-in optical fiber [11]. The use of a GRIN lens
reduces the divergence angle of the beam exiting from the lead-
in optical fiber. However, it also increases the area of the cavity
mirrors from about 10 �m to about 500 �m.  For the mirror less
than 10 �m,  surface errors can be ignored due to its small area.
Yet, for the mirror which is large enough to 500 �m, surface errors
cannot be ignored. Machining tolerance determines that mirror
surface errors are inevitable. In addition, complicated assembly of
GRIN lens has a strong possibility to result in surface errors. When
the surface errors increase to sum-�m level, their influence on the
interference contrast is visible. Hence, when we design an EFPI with
a certain interference contrast, we should add the consideration of
the influence of mirror surface errors. To the best of our knowledge,
up to now, all research about the design of an EFPI based on GRIN
lenses did not considered the influence of cavity surface errors.

In this paper, assuming that the beam width does not change
after multiple reflections in the F–P cavity, the interference con-
trast as function of surface errors is researched. This paper has
the following outline. In Section 2, the dependence of the inter-
ference contrast on surface errors is analyzed. Section 3 is devoted
to numerical analysis. Section 4 summarizes our results.

2. Performance of EFPI for the F–P cavity with surface
errors

A GRIN lens, as shown in Fig. 1, can function as a collimator which
expands the beam exiting from a SMF. The expanded beam is still
a Gaussian beam with a cross-sectional intensity distribution of a
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Fig. 1. Graded index (GRIN) lens functioned as a collimator.

Fig. 2. EFPI based on GRIN.

Gaussian profile. The cross-sectional intensity profile of the light
at the axis distance z from the endface of the GRIN lens can be
approximated as

I(r, ϕ, z) = 2P0

�ω(z)2
exp

(
− 2r2

ω(z)2

)
, (1)

where (r, ϕ) is the position in cross-section; P0 is the total power
of the light; and ω(z) is the beam radius at the axial position z, at
which the light intensity reduces to 1/e2 of its maximum intensity.

The beam radius of the Gaussian beam varies along the propa-
gation direction according to the following equation:

ω(z) = ω0

√
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)2
, (2)

zR = �ω2
0

�
, (3)

where zR is the Rayleigh length, and ω0 is the beam radius at the
beam waist where the beam radius is at its minimum, which deter-
mines the divergence angle � by the following equation:

� = �

�ω0
, (4)

Eq. (2) shows that if z � zR, ω(z) ≈ ω0. According to the reverse rela-
tion between the divergence angle � and beam waist ω0 shown in
Eq. (4), we can conclude that the smaller the divergence angle, the
longer the distance z which satisfies the relationship of ω(z) ≈ ω0.
For the beam divergence � which is small enough to 0.25◦, the
distance z can increases to 2 mm.

The EFPI based on a GRIN lens is shown in Fig. 2. To simplify the
problem, we assume that the beam divergence angle is so small
that the change of the beam width after multiple reflections can be
neglected. If the two endface mirrors of F–P cavity are parallel but
have the surface error of �(r,ϕ), the air-gapped EFPI can be mod-
eled using the multi-beam interference equation and the optical
intensity of the reflected light at the position (r,ϕ) is

I(L, ˚) = 2P0
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)
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. (5)

Here R1 and R2 are the reflectivity of the two mirrors, respectively;
L is the cavity length; and � is the optical wavelength in a vacuum.

Surface errors can be expressed by Zernike polynomials as fol-
lows:

˚(r, ϕ) =
N∑

i=0

AiZi

(
r

a, ϕ

)
, (6)

where a is the radius of the GRIN lens, and Zi(r/a, ϕ) are Zernike poly-
nomials which are a set of polynomials defined on a unit circle; Ai is
the Zernike polynomial coefficient; and the index j is a mode order-
ing number. For the primary surface errors, Zernike polynomials
are

Tilt :

{
Z1 = r cos ϕ/a,

Z2 = r sin ϕ/a,
(7)

Defocus : Z3 = 2r2

a2
− 1, (8)

Astigmatism :

{
Z4 = r2/a2,

Z5 = r2 sin ϕ cos ϕ/a2,
(9)

Coma :

{
Z6 = (3r2 − 2)r  cos ϕ/a3,

Z7 = (3r2 − 2)r  sin ϕ/a3,
(10)

Spherical : Z8 = 6r4

a4
+ 6r2

a2
− 1. (11)

The optical power P(L,�) of interference signal coupled into the
lead-in fiber can be calculated by integrating the light intensity
within the mirror area of F–P cavity, which is given by

P(L, ˚)  =
∫ a

r=0

∫ 2�

ϕ=0

I(L, ˚)r dr dϕ. (12)

Substituting Eq. (5) into Eq. (12), we get
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Eq. (13) can be rewritten as

P(L, ˚)  =
∫ ˚max
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�(˚)f (L, ˚) d˚, (14)
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Here ˚max and ˚min are the peak and valley of surface error ˚(r,ϕ),
respectively; �(˚) denotes the weight factor of interference sig-
nal for cavity length of L + ˚, which is determined by the profile of
˚(r,ϕ) and the optical intensity distribution of I(r,ϕ). Eq. (16) shows
that the optical power of interference signal is the sum of the opti-
cal intensity for different cavity length L +  ̊ with different weight
factors �(�).

Using the basic definition of integral, Eq. (16) can be written as

P(L, ˚)  =
N∑

k=M

�(k · 	˚)f (L, k · 	˚), (17)

where 	  ̊ → 0, k is an integer, N = ˚max/	˚, and M = ˚min/	˚.
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