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a b s t r a c t

In the field of bioimpedance measurements the Cole impedance model is widely used for characterizing
biological tissues and biochemical materials describing the impedance behaviour as a function of fre-
quency. These measurements give information about the electrochemical processes in tissues and can
be used to characterize the tissue or monitor for physiological changes. Traditionally these parameters
are extracted using fitting routines on direct measurements of the impedance. Here, a method of non-lin-
ear least squares fitting (NLSF) is applied to extract the single and double-dispersion Cole impedance
parameters from collected current-excited step response datasets without requiring direct impedance
measurements. The impedance parameters are extracted from MATLAB simulations showing less than
1% and 5.5% for the single and double dispersion parameters, respectively, when a 0.5% random noise
component is present. This extraction is verified experimentally using apples as Cole impedances show-
ing less than 2% relative error between simulated responses (using the extracted impedance parameters)
and the experimental results over the entire dataset.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Fractional calculus, the branch of mathematics regarding dif-
ferentiations and integrations to non-integer orders, is a field that
is over 300 years old. Its origins dating back to a correspondence
from 1695 between Leibniz and L’Hôpital, with L’Hôpital
inquiring about Leibniz’s notation, dny

dxn , and the meaning if n = 1/
2, and the reply from Leibniz, ‘‘It will lead to a paradox, a paradox
from which one day useful consequences will be drawn, because
there are no useless paradoxes’’ (Ortigueira, 2011). Time has
proven Leibniz quite the prophet as the applications of these
fractional integrals and derivatives has seen explosive growth in
many fields of science and engineering in the past few decades
since publication of the book by Oldham and Spanier dedicated
to fractional calculus (Oldham and Spanier, 1974). These
applications have appeared in control systems, signal processing,
bioengineering, thermal modelling and more. A detailed survey of
the major documents and events from the field of fractional cal-
culus from 1974 until the present are given in (Tenreiro Machado
et al., 2011). Concepts from fractional calculus have also been
migrating into electrical engineering (Ortigueira, 2008; Elwakil,
2010) showing applications including:

� Electronic filter circuits with greater control of the magnitude
attenuation characteristics (Maundy et al., 2011).
� Modelling the losses of coils using a fractional impedance

(Schafer and Kruger, 2008).
� Generalizing the Smith chart to the fractional domain for plot-

ting and matching fractional impedances in the RF and micro-
wave regime (Shamim et al., 2011).

A fractional derivative of order a is given by the Caputo deriva-
tive (Podlubny, 1999) as

C
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where C(�) is the gamma function and n � 1 6 a 6 n. We use the
Caputo definition of a fractional derivative over other approaches
because the initial conditions for this definition take the same form
as the more familiar integer-order differential equations. Applying
the Laplace transform to the fractional derivative of (1) with lower
terminal a = 0 yields
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Therefore it becomes possible to define a general fractance device
with impedance proportional to sa (Nakagawa and Sorimachi,
1992) where the traditional circuit elements are special cases of
the general device when the order is �1, 0, and 1 for a capacitor,
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resistor, and inductor, respectively. A special case of the general
fractance device is referred to as a Constant Phase Element (CPE)
which have shown numerous applications in the field of bioimped-
ance, which measures the passive electrical properties of biological
materials. These measurements give information about the electro-
chemical processes in tissues and can be used to characterize the
tissue or monitor for physiological changes (Grimnes and Martin-
sen, 2000). The impedance of CPE is ZCPE = 1/(jx)aC or 1/saC in the
s-domain, where C is the capacitance and a is its order. It’s name
is in reference to the phase angle, /CPE, which is independent of fre-
quency and dependent only on the order, a, given as /CPE = ap/2.
While a 2 R is mathematically possible, the values from experi-
mentally collected data are typically in the range of 0 < a < 1. These
devices have also been called fractional order capacitors, in refer-
ence to their order which takes a value between the traditional cir-
cuit elements of a resistor and capacitor. It is for this reason that we
use a capacitor as the schematic representation of CPEs in this work.

In the field of bioimpedance measurements the Cole impedance
model, introduced by Kenneth Cole in 1940 (Cole, 1940), is widely
used for characterizing biological tissues and biochemical materi-
als. The single-dispersion Cole model, shown in Fig. 1(a), is com-
posed of three hypothetical circuit elements. A high-frequency
resistor R1, a resistor R1 and a CPE (C1,a1). This model has become
very popular because of its simplicity and good fit with measured
data, illustrating the behaviour of impedance as a function of fre-
quency. An expanded model, the double-dispersion Cole model,
is used to accurately represent the impedance over a larger fre-
quency range or for more complex materials. This model, shown
in Fig. 1(b), is composed of an additional parallel combination of
a resistor (R2) and CPE (C2,a2) in series with the single dispersion
Cole model. The impedance of both models can be described by

ZðsÞ ¼ R1 þ
Xn

i¼1

Ri

1þ sai RiCi
ð3Þ

where n = 1 and 2 for the single and double dispersion models,
respectively. Noting that sa = (jx)a = xa[cos(ap/2) + j sin(ap/2)].
The Cole impedance model is not the only available bioimpedance
model, an alternative to the single-dispersion Cole impedance was
presented in (Grimnes and Martinsen, 2005) that is compatible with
the theory of relaxation can also be used.

Physiologically, the resistances in these models are contributed
by the numerous intracellular, extracellular,and cellular mem-
brane resistances within the tissue; with capacitance contributed
by the membrane capacitances of the numerous tissue cells. The

parameter a is a dimensionless quantity known as the dispersion
coefficient. It is possible to regard it in several ways, including, as
a distribution of relaxation times caused by the heterogeneity of
cell sizes and shapes, a measure of the deviation from an ideal
capacitor in the equivalent circuit, or as a measure of physical pro-
cesses like the Warburg diffusion (Grimnes and Martinsen, 2000).

Now, while these models do not provide an explanation of the
underlying mechanisms, there has been a large and expanding
body of research regarding their use in agriculture including

� Characterizing the tissues of different fruits and vegetables
including apples, apricots (Elwakil and Maundy, 2010), plumbs
(Maundy and Elwakil, 2012), potatoes, kiwis (Elwakil and
Maundy, 2010; Jesus and Tenreiro Machado, 2012), garlic,
tomatoes, and pears; with potential to measure the maturity
or give an estimate of lifespan for storage purposes (Jesus
et al., 2008).
� Relationship between the rooting ability and Cole parameters of

shoots and leaves of olive cuttings (Mancuso, 1998).
� Effects of drying and freezing-thawing treatments on eggplant

pulp samples (Wu et al., 2007).
� Non-destructive method for detection of incipient mould devel-

opment on wood surfaces (Tiitta, 2009).
� Fit the impedance data collected from the bark and wood of cur-

rent and one year old Scots pine shoots (Repo and Zhang, 1993).

To characterize a particular tissue or material using the Cole
model requires the determination of the four (R1,R1,C1,a1) or se-
ven (R1,R1,R2,C1,C2,a1,a2) impedance parameters for the single
and double dispersions, respectively. Early methods extracted the
parameters graphically from an impedance plot relating the imag-
inary impedance, Z00, to the real impedance, Z0. However, with the
rise of computers and very powerful numerical fitting software
the majority of parameters are now estimated using non-linear
least squares routines fitting experimental data to the desired
model. Parameters are selected such that the least squares error
between the experimental data and estimated response are mini-
mized. While these fitting processes were initially applied to
impedance data, research has been expanded to extract the param-
eters without requiring direct measurement of the impedance. In-
stead, parameters are extracted only from the real part of the
impedance (Z0) (Ward et al., 2006; Ayllon et al., 2009), the imagi-
nary (Z00), or the modulus (Ayllon et al., 2009; Buendia et al.,
2011, 2012; Freeborn et al., 2012a) components of the impedance,
the conductance component of the admittance (Seoane et al., 2010)
and even from time domain step response datasets (Freeborn et al.,
2012b). Methods without requiring fitting routines have also been
investigated to extract the parameters from the magnitude re-
sponse (Elwakil and Maundy, 2010; Maundy and Elwakil, 2012)
and the time domain response to a triangle-wave current input
(Elwakil and Maundy, 2011). A significant motivation in the re-
search of alternative methods for extracting the impedance param-
eters is to reduce the amount of hardware and cost of instruments
for these measurements (Buendia et al., 2011). Traditionally, to col-
lect the impedance data requires an impedance analyzer which is
expensive and not portable, though portable hardware to accom-
plish this same task has been developed (Tiitta and Olkkonen,
2002; Solmaz et al., 2009; Lin et al., 2012; Seoane et al., 2008) with
wearable instruments presented in (Ferreira et al., 2013) to moni-
tor patients in real-time. However, these instruments use direct
measurements of the impedance. By implementing indirect mea-
surement techniques there is the potential to further decrease
the cost of instruments by reducing the amount of required
hardware.

This work applies a non-linear least squares fitting (NLSF) to ex-
tract the single and double-dispersion Cole impedance parameters

(a)

(b)
Fig. 1. Theoretical (a) single and (b) double dispersion Cole impedance models.
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