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a  b  s  t  r  a  c  t

In  4F  system,  compressed  sensing  is  usually  implemented  by using  phase  modulation  in  Fourier  domain.
In  this  paper,  we  present  a type  of  4F  system  based  on intensity  modulation  in Fourier  domain  as  the
measurement  system  for  compressed  sensing.  The  feasibility  of  this  system  is demonstrated.  At  the  point
of coherence,  the  two  modulation  methods  are  compared  and  superiority  of  intensity  modulation  in
Fourier  domain  was  verified.  Simulations  are  presented  and  the  conclusion  we presented  is validated.
Finally,  we  analyze  the results.
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1. Introduction

Recently, compressed sensing (CS) theory was  discussed widely
[1–3]. Compared with the traditional sampling method, com-
pressed sensing is based on the sparsity of signal. In the compressed
sensing framework, we need to design a random matrix to measure
signal and recover the signal by convex optimization. Actually, the
measurement procedure can be understood as projecting the signal
into a random vector of a measurement matrix. By using random
measurement, CS can hugely reduce the sampling ratio which is
lower than the Nyquist sampling ratio, as a result we  save the time
spent on the sampling and data size of the sampling value is smaller
than before. Its appearance is very important to the signal process.

CS has been found to have wide usage in many applications,
such as optical imaging [4,5], biomedical imaging [6], high-speed
wireless communication [7], etc. In the imaging field, the single
pixel camera based on compressed sensing has been presented
by Davenport M.A. [8]. The advantage of single pixel camera is
its suitability for optical systems. In the compressed imaging field,
Rebecca M.  Willett’s group improved the image resolution by using
compressed coded aperture [9]. Gonzalo R. Arceze presented the
variable density compressed image sampling [10]. Justin Romberg
proved that the measurement system consisted of the 4F system
based on phase modulation in the Fourier domain can meet com-
pressed sensing requirements [11].
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Inspired by Justin Romberg, we  present our purposed mea-
surement system consisting of the 4F system based on intensity
modulation in the Fourier domain and proves it to be fitted for
compressed sensing. Another contribution of this paper is that com-
pared to the measurement system using phase modulation in the
Fourier domain [11], the superiority of our purposed system was
verified at the point of coherence.

This work is organized as follows: Section 2 introduces the prin-
ciple of compressed sensing. Section 3 contains the main theoretical
work of this paper and we construct the 4F system based on inten-
sity modulation in the Fourier domain as the measurement system.
Section 4 is the numerical simulation, in which the feasibility of our
imaging system is validated. Finally, Section 5 concludes this paper.

2. Principle of compressed sensing

The principle of compressed sensing can be expressed as follow.
To recover the unknown signal x ∈ Rn, we need to measure it and
the measurement results can be written as:

y1 = 〈x, �1〉· · ·ym = 〈x, �m〉 (1)

�k is a measurement vector whose size is same as signal x·yi is
measurement value. We can use � as the measurement system,
where the �k are stacked up as the rows in �.  The measurement
process can be expressed as:

y = ˚x  = ˚�  ̨ (x = �˛). (2)

In general, if one wants to recover signal x from y, we  need m ≥ n,
but when signal x is sparse in an orthogonal basis � (i.e. there
are relatively few nonzero entries in  ̨ and the number of nonzero
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Fig. 1. Compressed sensing based on intensity modulation in 4f system.

entries is K, called K-sparse), then it is possible to reconstruct signal
x with m � n.

For general images, there always is a space spanned by a
proper orthogonal basis where the image signal is sparse. Aurelien
Bourquard believes that the importance of � is its mere existence
[12]. Based on the sparse property, if matrix � = ˚� satisfies the
RIP (restricted isometry property), the signal can be recovered accu-
rately from the relatively fewer samples. The RIP is briefly reviewed
later. Suppose T ⊂ {1, 2 . . . N} and |T| ≤ K, ˚T which is indexed by T,
is a subset of �.  ık is the minimal constant which satisfies Eq. (4)
and it is correlated to �T and K. If there are � that meets Eq. (3),
then we say that � satisfies RIP. From the point of RIP, the goal
of the designing or optimizing measure system � is making ık as
minimal as possible.

(1 − ık)||x||22 ≤ ||�T x||22 ≤ (1 + ık)||x||22 (3)

RIP is a sufficient but not necessary condition, and it is hard to
determine whether or not the measurement system meets RIP by
algorithm. In fact, to implement compressed sensing, one always
designs the measurement system � which is incoherent or low
coherent with �.  The coherence can be defined as follows. Suppose
the measurement system is �,  and the orthogonal basis is �.  The
coherence � can then be written as:

� = maxl,k

〈
�l, �k

〉
, (4)

where �l is the lth row in � and �k is the kth column in �.  In (4), �
satisfies 1 ≤ � ≤ √

N. Based on conditions before, recovering signal
x is a convex optimization problem as shown in Eq. (5)

min
∥∥� T x

∥∥
1

s.t. y = ˚x. (5)

3. System scheme

Romberg has proven that the 4F system using phase modulation
in the Fourier domain can be incoherent with any orthogonal basis
[11].

Based on Romberg’s research, we present a type of 4F system
based on intensity modulation in the Fourier domain as the mea-
surement system. Section 3.1 introduces the composition of our
imaging system. Sections 3.2 and 3.3 verify feasibility and superi-
ority of our purposed measurement system respectively in theory.

3.1. Composition of imaging system

The basic composition of our purposed imaging system contains
a measurement and sparse sampling system which are schemati-
cally presented in Fig. 1. The measurement system is composed of
a pair of Fourier lenses and intensity SLM (spatial light modulator)
and finishing modulation of input signal. The sparse sampling sys-
tem randomly selects pixel locations and uses the pixel values of
these positions as input signal for imaging system.

The process is shown as follows. At first, laser beam is expanded
and collimated. A transmissive object is located in the way of beam.
Intensity distribution after the object is regarded as the input sig-
nal for this imaging system. In the Fourier domain (i.e. the back
focal plane of the first Fourier lens), the intensity SLM modulates
the frequency of the input signal. On the imaging plane (i.e. the

back focal plane of the second Fourier lens), the modulated image
is sampled randomly. Finally, the original signal is reconstructed
from the sampling result by using convex optimization.

The measurement system � in Fig. 1 is shown as follow:

 ̊ = √
nF∗PF, (6)

where F is a two-dimensional discrete Fourier matrix which repre-
sents a two-dimensional discrete Fourier transformation (as shown
in (7)), F* is the conjugate matrix of F, and P (as shown in (8)) rep-
resents the intensity modulation in Fourier domain. The elements
of P distribute uniformly and independently in the interval [0,1].

F(u, v) = 1√
N

e−i2	(u−1)(v−1)/N (7)

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11

. . .

aii

. . .

ann

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

aii∼uniform[0,  1] (8)

3.2. Incoherence analysis

Many works show that the key of implementing compressed
sensing is designing a measurement system which is incoherent
with any fixed orthogonal basis �.

According to the definition of coherence in Eq. (4) and the
conclusion in [11], when coherence satisfies Eq. (9), the measure-
ment system is nearly incoherent with the orthogonal basis. As a
result, we can reconstruct a signal at the smallest sampling ratio.
With the coherence smaller than 2

√
log(4n2/ı),  the probability of

P(maxl,k|〈˚l, �k〉| < 2
√

log(4n2/ı))  will exceed 1 − ı (as shown in
(8)) and � will approach 1 [11].

P(maxl,k|〈˚l, �k〉| < 2
√

log(4n2/ı))  > 1 − ı (9)

Based on the analysis before, it is obvious that if the proposed
measurement system can satisfy (8), then it will fit for compressed
sensing.

According to the expression of matrix P in (7), the coherence can
be written as:

〈
˚l, �k

〉
=

n∑
j=1

e
i2	(l−1)(j−1)

n ajj�̂k(j) (10)

In Eq. (9), �̂k(j) = F�k, e(i2	(l−1)(j−1))/n = i
, Eq. (8) can be written
as:

〈
˚l, �k

〉
=

n∑
j=1

ei
ajj�̂k(j) (11)

In the complex plane, it is obvious that

|ei
 | = | cos 
 + i sin 
| = 1 (12)∣∣(cos 
 + i sin 
)ajj�̂k(j)
∣∣ ≤

∣∣ajj

∣∣ ∣∣�̂k(j)
∣∣ (13)

Because of |ajj| ∈ [0, 1], (13) can be written as:∣∣(cos 
 + i sin 
)ajj�̂k(j)
∣∣ ≤

∣∣�̂k(j)
∣∣ (14)

The complex Hoeffding inequality tells us that,

P
(∣∣〈˚l, �k

〉∣∣ > �
)

≤ 4 exp

⎧⎨
⎩− �2

2
∑n

j=1

∣∣�̂k(j)
∣∣2

⎫⎬
⎭ (15)
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