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a  b  s  t  r  a  c  t

We  formulate  the  fourth  order  correction  to  a  paraxial  Gaussian  beam  propagated  along  the  axis of
symmetry  of  a  parabolic  index  lens.  First  we  examine  the  evolution  of  a complex-source-point  spherical
wave (equivalent  paraxially  to  a Gaussian  beam)  through  the  lens  in  a two-dimensional  xz  plane.  Taking
into  account  the  terms  of  up  to  fourth  order  in  aperture  variables,  we  find  a  ray-optical  solution  to  the  exit
beam that  is  represented  in  terms  of  aberration  function.  We  also  analyze  the  effect  of  the  lens  aberration
exerted  on  the degradation  in  the  quality  of  a Gaussian  beam.  The  fourth  order-corrected  wave  function
derived  here  may  be  used  to evaluate  the  quality  of a Gaussian  beam  focused  with  a  parabolic  index  lens.
Further  it  may  be  applied  to the case  of  an  orthogonal  system  in  which  the  index  variations  are  different
in  the  xz  and  yz planes.

© 2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

A laser beam is generally highly directional and does not
have a spatially uniform intensity distribution. The laser beam
of fundamental mode confined to a region near the optic axis is
well-described as a Gaussian beam [1]. It is also known that the
sum of all the higher order corrections to the paraxial Gaussian
beam is equivalent to a spherical wave emanating from a complex
source point [2,3]. Recently we have examined the evolution of
a complex-source-point spherical wave (CSPSW) through a rota-
tionally symmetric optical system which is composed of various
refracting (or reflecting) surfaces such as spheres, aspherics, and
zone plates [4–8]. As a result, fourth order corrections have been
made in terms of Seidel-type aberration coefficients to the Gaussian
beam passing through the optical system. We  have also analyzed
what aberrations of the system degrade the quality of the Gaussian
beam. Today inhomogeneous or gradient index (GRIN) materials
are finding a variety of applications as lenses in micro-optical
systems and a substitute for aspherics in conventional imaging
systems [9]. In particular, the parabolic index profile is worth con-
sidering in the context of GRIN lenses since it yields analytic results
which facilitate the understanding of more general forms of pro-
file gradient [10]. However, we have not discussed the quality of a
Gaussian beam focused with a parabolic index lens.
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In this article, we discuss the Seidel-type aberration of a
parabolic index lens which degrades the quality of a Gaussian beam
propagated along the axis of symmetry of the lens. First we exam-
ine the evolution of the equivalent CSPSW through the lens in a
two-dimensional xz plane. Taking into account the terms of up to
fourth order in aperture variables, we find a ray-optical solution
to the exit beam that is represented in terms of aberration func-
tion. The real part of the aberration function has an analogy to the
spherical wavefront aberration in ordinary ray optics [11], while its
imaginary part gives the fourth order correction to the amplitude
variation of the Gaussian beam. Using the derived formula, we  also
analyze the effect of the lens aberration exerted on the quality of a
Gaussian beam. The fourth order-corrected wave function derived
here may  be used to evaluate the quality of a Gaussian beam focused
with a parabolic index lens. Further it may  be applied to the case of
an orthogonal system in which the index variations are different in
the xz and yz planes.

2. Evolution of a complex-source-point spherical wave
through a parabolic index lens

Fig. 1 shows (a) a paraxial Gaussian beam of vacuum wave-
length � which is focused with a parabolic index lens and (b) a
complex-source-point spherical wave (CSPSW) which is equivalent
paraxially to the Gaussian beam. w0 (or w′

0) is the minimum spot
size of the incident (or exit) Gaussian beam. The lens of thickness
ı separates two  media of refractive indices n and n′. The coordi-
nate system is referenced to the front surface of the lens which is

0030-4026/$ – see front matter © 2014 Elsevier GmbH. All rights reserved.
http://dx.doi.org/10.1016/j.ijleo.2014.01.012

dx.doi.org/10.1016/j.ijleo.2014.01.012
http://www.sciencedirect.com/science/journal/00304026
http://www.elsevier.de/ijleo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijleo.2014.01.012&domain=pdf
mailto:sjang@hnu.kr
dx.doi.org/10.1016/j.ijleo.2014.01.012


3118 S. Chang / Optik 125 (2014) 3117–3120

Fig. 1. (a) A paraxial Gaussian beam of vacuum wavelength � is propagated along
the axis of symmetry of a parabolic index lens. The lens of thickness ı separates two
media of refractive indices n and n′ . The coordinate system is referenced to the front
surface of the lens. w0 (or w′

0) is the minimum spot size of the incident (or exit)
beam. (b) The Gaussian beam is equivalent paraxially to the spherical wave with a
center at a complex location (0, z0 + ib0) or (0,  z′0 + ib′

0) in the xz plane. The Rayleigh
range of the incident (or exit) beam is given by b0 = n�w2

0/� (or b′
0 = n′�w′2

0 /�). The
path  of the complex ray is determined by applying Fermat’s principle.

parallel to the x-and y-axes, and the axis of symmetry of the lens is
taken as the z-axis. A ray of light starts from a source point O on the
z-axis, passes through the points P1 and P2 on the front and rear
surfaces of the lens, and goes to an image point O′ on the z-axis.
By rotational symmetry of the lens under consideration, the path
of the ray from O through P1 and P2 to O′ must always lie on one
plane. Therefore, we may  treat this problem in a two-dimensional
space, chosen as the xz plane. If the source point O is denoted by
coordinates (0, z0 + ib0), the points P1 and P2 by coordinates (x1, 0)
and (x2, ı), and the image point O′ by coordinates (0,  z′0 + ib′

0), the
light disturbance arriving at P1 from O may  be represented by

 (x1, 0) = C

r
exp (iknr − iωt) , (1)

where C is the normalization constant, i(= √−1) is the imaginary
symbol, k(= 2�/�) is the magnitude of the wave vector in vacuum,
ω is the angular frequency of the light, and

r =
[
x2

1 + (z0 + ib0)2]1/2
. (2)

In the above we  choose the branch of r such that its real part is
equal to −z0 when it is large. By so doing, the wave function in Eq.
(1) is equivalent to the sum of all the higher order corrections to the
paraxial Gaussian beam of Rayleigh range b0, where b0 = n�w2

0/�
[2,3].

If the medium of the lens has a dielectric function of parabolic
type

�(x) = n2
0(1 − Bx2), (3)

in the xz plane [10], where n0 is the index of refraction on the z-
axis and B (> 0) is the parameter governing the index variation, the
transmission coefficient for a ray of light impinging on P1 may  be
expressed as follows:

�12 � �0 exp(ik�12) (4)

where �0 is the constant factor and � 12 is the optical path length
of the ray from P1 to P2, evaluated as
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in terms of the constant of motion in the z-direction

ˇ1 =
√
�(x1) − (

nx1

r
)
2
. (6)

On the one hand, in the paraxial regions such that x2
1 � |z0 +

ib0|2 and Bx2
1 � 1, the light disturbance transferred from the source

point O through the lens to an observation point Q can be evaluated
using the Fresnel–Kirchhoff diffraction integral [12]. If the terms
of up to second order in the aperture variable x1 are taken into
account, the amplitude of the light at Q of coordinates (x′, z′) is
given by

 ′(x′, z′) � C ′
∫

aperture

dx1 exp[ik(nr + �12 + n′r′)], (7)

where C′ is the factor independent of x1 and the path lengths are
written as
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in a quadric approximation. It should be noted here that a time-
harmonic factor exp(−iωt) has been dropped from Eq. (7) for
simplicity. Assuming the size of aperture is large enough to accept
the paraxial Gaussian beam, we  analytically solve the diffraction
integral (7) to get

 ′(x′, z′) � A exp

[
in′k

x′2

2(z′ − z′0 − ib′
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]
, (9)

where A is the factor independent of x′ and the paraxial beam
parameters are defined by⎛
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with the equivalent power of the lens system

K = n0
√
B sin

(
ı
√
B
)
. (11)

The wave function in Eq. (9) is equivalent paraxially to a spher-
ical wave with a center at a complex location (0,  z′0 + ib′

0). It also
represents the exit Gaussian beam of Rayleigh range b′

0, where
b′

0 = n′�w′2
0 /�.

On the other hand, if we  regard the equivalent CSPSW in Eq. (1)
as a bundle of rays originating from a complex source point O, the
formula in Eq. (9) can be derived from Fermat’s principle. The path
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