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a  b  s  t  r  a  c  t

Multi-detectors  imaging  system  often  suffers  from  the  problem  of  the  stripe  noise,  which  greatly  degrades
the quality  of the  resulting  images.  To  better  remove  stripe  noise  and preserve  the  edge  and  texture
information,  a robust  destriping  algorithm  with  spatially  adaptive  unidirectional  total  variation  (SAUTV)
model  is introduced.  The  spatial  information  of  the  striping  noise  is  detected  by  using the  stripe  indi-
cator  called  difference  eigenvalue,  and  a weighted  parameter  determined  by  the  difference  eigenvalue
information  is added  to  constrain  the regularization  strength  of the  UTV  regularization.  The  proposed
algorithm  can  effectively  remove  the  stripe  noise  and  preserve  the  edge  and  detailed  information.  More-
over,  it  becomes  more  robust  with  the change  of  the regularization  parameter.  Split  Bregman  method  is
utilized  to  efficiently  solve  the  resulting  minimization  problem.  Comparative  results  on  simulated  and
real  striped  images  taken  with  two kinds  of imaging  systems  are  reported.

© 2013  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The stripe noises commonly exist in imaging systems with
multi-detectors, such as Moderate Resolution Imaging Spectrora-
diometer (MODIS) images [1,2] and hyperspectral images [3]. These
stripe noises severely limit the application of these images in the
next phase. Therefore, it is critical to remove the stripe noise and
improve the quality before the subsequent image interpretation
processes. It is often assumed that the stripe noise is an additive
noise [1], and the degradation process can be described as

g(x, y) = u(x, y) + n(x, y), (1)

where g(x, y) is the degraded image by the instrument at pixel
(x, y), u(x, y) is the latent image, and n(x, y) is the stripe noise.
How to estimate the latent image u from the observation g is an
ill-posed inverse problem and regularization is necessarily intro-
duced. In recent years, the total variation (TV) is widely used in
many applications, mainly due to its desirable properties such as
convexity and the ability to preserve sharp edges [1,2,4]. In the
MAP  framework, Shen [2] firstly proposed a maximum-a-posteriori
based method with a Huber-Markov prior to destripe, which means
the prior term is an alternative between the TV regularization and
Tikhonov regularization.
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In [1], the authors proposed a more sophisticated unidirec-
tional TV (UTV) model to remove this type of noise, which assumes
the gradients along the stripe lines are not affected by the stripe
noise. Their method presents impressive destriping results. How-
ever, there are certain weaknesses in their proposed model. First,
the authors applied the standard gradient-descent algorithm to
solve their model. Thus, the time step should be well selected, or
else, it may  require significant processing time to gain a satisfac-
tory solution. Second, the stripe noise and the useful information
of the image such as edge and other details are treated in the same
way which means the important image features will be more easier
filtered out as the stripe noise is removed. These drawbacks of the
algorithm in [1] limit its practical application. In [5], the authors also
made use of the directional character via the wavelet decomposi-
tion, and then employed the Fourier filters to remove the stripes
in the specific bands. To obtain the appealing destriping result, we
have to manually adjust some parameters.

To overcome the shortcomings in [1], an improved UTV  algo-
rithm with spatially adaptive unidirectional total variation (SAUTV)
is introduced. In this work, the spatial information of the striping
noise was  detected by using the stripe indicator called difference
eigenvalue, which enable us to automatically balance the regular-
ization strength between different spatial property regions in an
image. The regions containing the striping noise will be enforced
with a large regularization strength while a small regularization
strength is imposed on nonstripe regions for preserving the edges
and details. What is more, the proposed algorithm becomes more
robust with the change of the regularization parameter. In addi-
tion, considering the computational complex of SAUTV model, a
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faster technique such as split Bregman method is applied to solve
the SAUTV based destriping algorithm which requires less pro-
cessing time. Its basic idea is to introduce an auxiliary variable to
decompose a complex optimization problem into two independent
subproblems, which are easy to implement.

The letter is organized as follows. Section 2 describes the pro-
posed algorithm in detail. Experimental results are describes in
Section 3. Finally, the conclusions are drawn in Section 4.

2. Proposed algorithm

In [1], the authors exploited an unidirectional properties of scan
line noise and incorporated the properties based on UTV into a vari-
ational framework. In this framework, destriping can be viewed as
an optimization problem based on the minimization of the follow-
ing unidirectional variational model:

min
u

‖∇x(u − g)‖1 + �‖∇yu‖1, (2)

where the first term ‖∇x(u − g)‖1 and second term ‖∇yu‖1 denotes
the horizontal (cross-track) and vertical (along-track) variations of
the image u respectively. � is the regularization parameter which
plays a very important role. It controls the UTV regularization
strength. If � is too small, the stripe noise will not be well removed;
inversely, if it is too large the detailed information such as edge will
be blurred. It means that the regularization parameter � is spa-
tially dependent. Therefore, in this research, a spatially weighted
UTV regularization considering the spatial property of the image is
introduced. A key issue is to select a good spatial striping indicator,
which can distinguish striping noise from other nonstripe regions.
To do this, the stripe indicator called difference eigenvalue [4] was
used to detect the spatial information of the striping noise includ-
ing its position and intensity. The difference eigenvalue is based on
the Hessian matrix of the image

H =
[

uxx uxy

uyx uyy

]
, (3)

where uxx, uxy, uyx, and uyy are the second derivatives of u. The two
eigenvalues of the H, denoted by �1 and �2 are given by:

�1,2 = 1
2

[(uxx + uyy) ±
√

(uxx − uyy)2 + 4u2
xy]. (4)

Let �1 denote the larger eigenvalue and �2 denote the other one.
The difference eigenvalue edge indicator d(x, y) is defined as

d(x, y) = (�1 − �2)�1ı(x, y), (5)

where ı(x, y) is a local variance image of u

ı(x, y) = 1
9

1∑
i=−1

1∑
i=−1

[u(x + i, y + j) − u(x, y)]. (6)

Thus, the stripe indicator is defined as following:

D(x, y) = G� ⊗
√

(∇xd)2 + (∇yd)2, (7)

where G� denotes the Gaussian kernel with the parameter � (the
size is 3×1, � = 1 in this paper), ⊗ is the convolution operator. Com-
bining the stripe indicator into UTV model, we define a novel SAUTV
model with spatially adaptive property:

SAUTV =
∑

x

∑
y

W(x, y)|∇yu(x, y)|, (8)

where W(x, y) = �D(x, y)/(1 + �D(x, y)) is the spatially adaptive
weight. Substituting the UTV term in (2) with SAUTV in (8), we
introduce the cost functional:

E(u) = ‖∇x(u − g)‖1 +
∑

x

∑
y

�W(x, y)|∇yu(x, y)|. (9)

Thus, our method is to seek the optimal u that minimize E(u).
The difficulty for solving (9) is that the �1 term is nondifferen-
tiability and inseparable. To overcome this problem, we use split
Bregman method. The split Bregman method is first introduced in
[7] as a very efficient tool to solve the general �1-regularized opti-
mization problems. The basic idea is to convert the unconstrained
minimization problem in (9) into a constrained one by introducing
two auxiliary variables dx = ∇ x(u − g) and dy = ∇ yu. This leads to the
constrained problem:

min
u,dx,dy

‖dx‖1 +
∑

x

∑
y

�W(x, y)|dy(x, y)|,

s.t. dx = ∇x(u − g) and dy = ∇yu.

(10)

Then, with strictly enforcing the constraints by applying the Breg-
man  iteration, the problem (10) could be further transformed into
a nonconstrained minimization problem:

min
u,dx,dy

‖dx‖1 +
∑

x

∑
y

�W(x, y)‖dy‖1

+ ˇ

2
‖dy − ∇yu − by‖2

2 + ˛

2
‖dx − ∇x(u − g) − bx‖2

2, (11)

where  ̨ and  ̌ are two  positive penalization parameters. We  now
investigate these subproblems one by one.

(1) The u-related subproblem is

min
u

˛

2
‖dx − ∇x(u − g) − bx‖2

2 + ˇ

2
‖dy − ∇y − by‖2

2, (12)

which is a least-square problem. It is equivalent to the following
linear system:

˛∇T
x ∇x(uk+1 − g) + ˇ∇T

y∇yuk+1 = ˛∇T
x (dk

x − bk
x) + ˇ(dk

y − bk
y),

(13)

because the system is strictly diagonal, the Gauss–Seidel solu-
tion to this problem can be written componentwise as uk+1

i,j
=

Gk
i,j

, where

Gk
i,j = ˛

2  ̨ + 2ˇ
(uk

i+1,j + uk
i−1,j + 2gi,j − gi+1,j − gi−1,j)

+ ˛

2  ̨ + 2ˇ
(bk

x,i+1,j − bk
x,i,j + dk

x,i,j − dk
x,i+1,j)

+ ˇ

2˛+2ˇ
(uk

i,j+1 + uk
i,j−1 + bk

y,i,j+1 − bk
y,i,j+dk

y,i,j − dk
y,i,j+1).

(14)

(2) dx-related subproblem is

min
dx

‖dx‖1 + ˛

2
‖dx − ∇x(u − g) − bx‖2

2, (15)

it can be computed using the standard soft-threshold formula
in [8]

dk+1
x = shrink(∇x(uk+1 − g) + bk

x, 1/˛), (16)

where

shrink(x, r) = x

|x| max(|x| − r, 0).  (17)
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