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a  b  s  t  r  a  c  t

We  investigate  surface  waves  at the  interface  between  a  metal  and  a photovoltaic-photorefractive  (PP)
crystal. These  surface  waves  appear  in  several  forms:  delocalized  surface  waves,  shock  surface  waves,
and localized  surface  waves.  Only  localized  surface  waves  have  limited  energy.  We  demonstrate  that  the
transverse  sizes  of  localized  surface  waves  decrease  with  an  increase  in  the  propagation  constant  and  the
amplitudes  of localized  surface  waves  increase  with  the  propagation  constant.  The  stability  of  localized
surface  waves  is investigated  numerically  and  it is  found  that they  are  stable.

© 2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The richness of the nonlinear-optical effects in photorefractive
media has given rise to a great deal of new soliton phenomena
in these materials. To date, many branches of solitons, such as
screening solitons [1,2], photovoltaic solitons [3–5], screening-
photovoltaic solitons [6–9], photorefractive polymeric solitons
[10,11], and solitons in centrosymmetric photorefractive crystals
[12], have already been discovered, of which studies used bulk pho-
torefractive crystals. On the other hand, the presence of interfaces
between linear and photorefractive materials strongly affects the
propagation of optical beams. Such interfaces can support surface
waves localized at the very interface [13–22]. The unique fea-
tures of such surface waves have no analogues in homogeneous
media. Delocalized photorefractive surface waves with the long
slowly decaying oscillating tails going away into the volume of the
photorefractive crystal have been predicted [17,18] and observed
[19]. Of particular interest from a practical point of view are local-
ized photorefractive surface waves, which have not oscillating
tails in the volume of the photorefractive crystal. Such localized
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surface waves at the interface between linear media (dielectric or
metal) and biased non-photovoltaic-photorefractive (non-PP) crys-
tals [20,21] or unbiased non-PP crystals [22] have been predicted.
However, it is not clear whether localized surface waves between
a metal and a PP crystal are possible.

In this paper, we analyze surface waves at the interface between
a metal and a PP crystal. We  show that these surface waves
appear in several forms: delocalized surface waves, shock surface
waves, and localized surface waves. Delocalized surface waves and
shock surface waves have infinite energy, whereas localized surface
waves have limited energy. We  demonstrate that the transverse
sizes of localized surface waves decreases with an increase in the
propagation constant and the amplitudes of localized surface waves
increases with the propagation constant and that localized surface
waves are stable. Relevant examples are provided where the PP
crystal is assumed to be BaTiO3.

2. Theoretical model and results

To start, let us first consider the propagation of an optical beam
along the z-axis near the interface between a metal occupying the
half-space x ≥ 0 and a PP crystal occupying the half-space x < 0.
For demonstration purposes, let the PP crystal be BaTiO3 with its
optical c axis oriented along the x axis. Moreover, let us assume
that the beam is linearly polarized along the x axis and that the
skin layer of the metal, which is of the order of the wavelength, is
zero. Under these conditions, the perturbed extraordinary refrac-
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tive index n′
e (along the c-axis) is given by (n′

e)2 = n2
e − n4

e r33Esc ,
where ne is the unperturbed extraordinary refractive index of the
PP crystal, r33 is the electro-optic coefficient, and Esc is the induced
space-charge field. In typical PP media and for relatively broad
beam configurations, the space-charge field can be obtained from
the Kukhtarev–Vinetskii transport model and it is given by [5]

Esc = −Ep
I

I + Id
+ KBT

e(I/Id + 1)

∂
(

I/Id
)

∂x
, (1)

where I = I(x, z) is the intensity of the light beam, KB is the Boltzmann
constant, T is the absolute temperature, e is the electron charge, Id
is the dark irradiance of the crystal, and Ep is the photovoltaic field
constant.

In turn, the propagation equation of the optical beam can be
obtained by substituting the expression for the perturbed refractive
index (induced by the space-charge field) into the paraxial wave
equation. After appropriate normalization, the complex amplitude
A of the light field is then found to obey the following dynamical
evolution equation:

i
∂A

∂�
= −1

2
∂2

A

∂s2
− ˛

I

I + Id
A + �

(I/Id + 1)

∂
(

I/Id
)

∂s
A for s < 0,

A = 0 for s ≥ 0.

(2)

Here the parameters  ̨ = x2
0k2n2

e r33Ep/2 and � = KBTk2n2
e r33x0/2e

are the relative contribution of the photovoltaic component and
the nonlocal diffusion component of the nonlinear response,
respectively; x0 is an arbitrary transverse scale; � = z/kx2

0 is the
normalized longitudinal coordinate; k = 2�ne/� is the wave num-
ber in the area of the PP crystal; � is the free-space wavelength
of the lightwave used; and s = x/x0 is the normalized transverse
coordinate.

The first term in the right-hand side of Eq. (2) describes the
diffraction spreading of the beam; the second term describes the
beam self-focusing caused by the photovoltaic effect of the pho-
torefractive nonlinearity; and the last term describes the beam
self-bending caused by the diffusion component of the nonlinear
response of the PP crystal. The stationary surface waves can be
formed at the interface between a metal and a PP crystal owing
to compensation of the beam reflection from the interface and its
self-bending towards the interface. In this study, the BaTiO3 param-
eters are taken to be r33 = 80 pm/V, ne = 2.365, and Ep = 5 kV/cm. If
we let � = 500 nm,  x0 = 10 �m,  and T = 300 K, we  find that  ̨ = 9.88
and � = 0.051.

We  look for stationary solutions of the system of Eq. (2) in the
form A =

√
Idu (s) exp

(
ib�

)
, where the envelope u (s) is the real

function and b is the real propagation constant. Furthermore, the
initial conditions corresponding to both the continuity of the tan-
gential component of the electric field and the continuity of the
normal component of the magnetic induction vector at the inter-
face have that u(s = −0) = 0 and du(s = −0)/ds = m, where m is the free
parameter describing the strength of the nonlinear effects. Direct
substitution of this form of A into Eq. (2) leads to the following
differential equation:

d2u

ds2
= 2bu − 2˛

u3

1 + u2
+ 4�

du

ds

u2

1 + u2
for s < 0,

u = 0 for s≥0.

(3)

The above equations cannot be solved analytically and numer-
ical integration is necessary. To find the stationary solutions of
Eq. (3), we use a numerical shooting method, which reduces a
two-point boundary problem to the Cauchy problem. By varying
parameters b and m,  we obtained various profiles of surface waves
at the interface between the metal and BaTiO3 crystal.

0 1 2 3 4

−20

−10

0

10

20

wave amplitude u

po
te

nt
ia

l e
ne

rg
y 

U

b<0
0<b<α
b>α

Fig. 1. Typical profiles of the potential well U for different values of the propagation
constant b when  ̨ = 9.88.

Possible classes of solutions of Eq. (3) can be easily obtained
from quite general considerations based on the analogy of Eq. (3) for
the envelope of the surface wave with the equation describing the
motion of a mechanical particle in a potential well with nonlinear
dissipation, where the wave envelope u is equivalent to the particle
position and the transverse coordinate s is equivalent to time. The
potential and kinetic energies of the particle with unit mass are,
respectively, defined as

U = (  ̨ − b) u2 −  ̨ ln(1 + u2), (4)

T = 1
2

(
du

ds

)2

. (5)

In that case, Eq. (3) can be written in the following form:

d (T  + U)
ds

= 4�
u2

1 + u2

(
du

ds

)2

, (6)

of which the right-hand side describes the nonlinear friction force
that is proportional to the square of the particle velocity du/ds.
Fig. 1 depicts the typical profiles of the potential well U for different
values of the propagation constant b when  ̨ = 9.88. Note that the
potential well U is symmetric with respect to the point u = 0. In this
figure, we  present only the part of the potential well corresponding
to u > 0.

Let us first consider negative values of the propagation constant
b < 0, as shown in Fig. 1. In this case, the potential well U has a single
stable stationary point u = 0, which is a local minimum of potential
U. A particle with a nonzero initial energy U + T describing the cor-
responding surface mode performs damped oscillations (as s varies
from 0 to − ∞),  moving periodically from the region of positive u to
the region of negative u, and consequently losing its energy because
of the influence of nonlinear friction. When s→ − ∞,  such a parti-
cle approaches gradually the stable equilibrium position u = 0. This
type of particle motion corresponds to delocalized surface waves
[21] with long oscillating tails in the volume of the PP crystal. The
profiles of such surface waves are shown in Fig. 2. Numerical inte-
gration of Eq. (3) shows that delocalized surface waves have infinite

energy W =
∫ 0

−∞ u2(s)ds because of the very slow decay of the oscil-
lating tail.

Second, consider the case of positive values of the propagation
constant b lying in the interval 0 < b < ˛. The potential well U has
two stable (u = ±

√
b/(  ̨ − b)) and one unstable (u = 0) stationary

points (see dash-dot curve in Fig. 1). In this case, a particle with
a nonzero initial energy U + T will be periodically transferred from
the right side of the potential well (corresponding to u > 0) into the
left side of the potential well (corresponding to u < 0). The particle
loses its energy because of the influence of nonlinear friction. When
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