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a  b  s  t  r  a  c  t

The  existence,  stability  and propagation  dynamics  of  defect  solitons  at interfaces  in one-dimensional
composite  optical  lattices  with  focusing  saturable  nonlinearity  are  investigated  numerically  and  ana-
lytically.  Solitons  show  unique  properties  with  the  change  of  defect  intensity.  For  a  positive  defect,  the
surface  solitons  only  exist  in the  semi-infinite  gap,  and  are  stable  at  lower  power  but  unstable  at  high
power.  For  a  negative  defect,  the  surface  solitons  exist  not  only  in the  semi-infinite  gap,  but  also  in  the
first gap;  the  surface  solitons  show  rich  characteristics  of instability  in  the  entire  semi-infinite  gap.

© 2012 Elsevier GmbH. All rights reserved.

1. Introduction

Since the soliton phenomenon was first described by John Scott
Russell who observed a solitary wave in the Union Canal in Scot-
land [1]. Research on solitons has excited more interest in many
branches of nonlinear science, including biology, photonic crystals,
solid state physics, Bose–Einstein condensates, nonlinear optics.
In particular, defects and defect states exist in a variety of lin-
ear and nonlinear systems, including solid state physics, photonic
crystals, Bose–Einstein condensates, and the periodic structure. The
introduced defects at interfaces between lattices can substantially
modify the properties of solitons propagation. Defect solitons in
lattices with specially designed defect have attracted special atten-
tion due to their novel and unique characteristics in diverse areas
of physics and been applied extensively for steering of optical
beams [2–4], switching [5], and filtering [6]. Recently, the existence
and stability of defect solitons have been theoretically discussed
in many systems such as simple optical lattices or superlattices
[7–15]. In experiments, defect solitons have been successfully
observed in both one- and two-dimensional photonic lattices
[16–19]. Defect solitons supported at the interfaces between a sim-
ple lattice and a superlattice have been studied numerically and
demonstrated experimentally, in which the defects at the interface
are not considered [20]. Moreover, the existence and stability of
surface defect solitons (SDSs) at the interface between an optically
induced simple lattice and a superlattice have been investigated
and discussed numerically [21]. Very recently, surface defect gap
solitons in one-dimensional dual-frequency lattices and simple
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lattices have been discussed numerically [24]. In this letter,
we reveal that the SDSs can exist at interfaces between one-
dimensional composite optical lattices with a defect when the
defect strength (or defect intensity) is changed; the stability of SDSs
in composite lattices with different intensity distributions is also
studied analytically and numerically.

2. Model

We  consider the probe beam propagating along the interface
between one-dimensional composite optical lattices in the focusing
saturable nonlinear media. Light transmission is governed by the
following nonlinear Schrödinger equation [7,8,12,13]:
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Here I0 is the peak intensity of optical lattices or superlattices.
˝1 = 1 (in unit of �/D) and ˝2 = D/d (in unit of �/D) are the lattice
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Fig. 1. Lattices intensity profile with I0 = 3. (a) Positive defect ε = 0.5, (b) negative
defect ε = −0.5, (c) without defect ε = 0, (d) applied dc field E0 versus the propagation
constant � (gray regions corresponding to Bloch band).

wave vectors which describe lattices period and asymmetry, where
D and d are their corresponding lattice spacings. x (in unit of D/�)
and z (in unit of 2klD2/�2) is the transverse and longitudinal scale,
respectively, in which kl = k0ne, k0 = 2�/�0 is the wave-number in
vacuum (�0 is the wavelength in vacuum) and ne is the unperturbed
refractive index. E0 (in unit of �2/(k0

2 n4
e D2�33)) is the applied DC

field voltage, where �33 is the electrooptical coeffient of the crys-
tal. ε is the modulation parameter of defect intensity, respectively.
We  take typical parameters in experimental conditions from Refs.
[7–11]. Other parameters are I0 = 3, E0 = 6.The composite potential
given by Eqs. (2)–(4) can be induced optically by launching a beam
into the amplitude mask whose intensity distribution of transmis-
sion light is the same as the superlattice potential. The intensity
distributions of composite optical lattices with a positive defect
(ε = 0.5), a negative defect (ε = −0.5) and without defect (ε = 0) are
displayed in Figs. 1(a)–(c) respectively. Using the above parameters,
we obtain the region of the semi-infinite gap as � ≤ 3.07, and the
first gap as3.55 ≤ � ≤ 4.85 by the plane wave expansion method,
the bandgap’s structure shown in Fig. 1(d).

We look for the stationary solitons of Eq. (1) in the form of U(x,
z) = u(x)exp(−i�z), where � is the propagation constant, and u(x)
is the real function representing the profile of the soliton solu-
tion. Substituting the expression into Eq. (1) yields the following
ordinary differential equation:

∂2u

∂x2
− E0

1 + IL + |u|2 u + �u = 0 (5)

The soliton solutions u(x) can be solved numerically by a modified
square-operator method [22]. The power of solitons is defined as
P =

∫ +∞
−∞ u2(x)dx. To confirm the stability properties of defect soli-

tons in one-dimensional composite optical lattices, we  search for
the perturbed solutions of Eq. (1) in the form

U = {u(x) + [v(x) − w(x)] exp(ız)

+  [v(x) + w(x)]∗ exp(ı∗z)} exp(−i�z) (6)

where v(x) and w(x) are the real and imaginary part of infinitesi-
mal  perturbations, respectively, with a complex instability growth
rate ı. The superscript “*” means complex conjugation, and v(x),
w(x) � 1. Substituting Eq. (6) into Eq. (1) and linearizing, the eigen-
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which can be solved numerically [23,26].

3. Numerical results and discussion

To elucidate the results of the linear stability, we simulate Eq.
(1) by adding a noise to the inputted soliton by multiplying them
with [1 + 	(x)], where 	(x) is a Gaussian random function whose

Fig. 2. (ε = 0) (a) The power versus the propagation constant (gray regions corre-
sponding to Bloch bands). (b) Re(ı) versus the propagation constant. (c) Unstable
SDS  with � = 1.42 (point A in (a)). (d) Stable SDS with � = 2.15 (point B in (a)). (e) Sta-
ble SDS with � = 2.55 (point C in (a)). (f) SDS propagation for (c). (g) SDS propagation
for (d). (h) SDS propagation for (e).

variance 
2 = 0.01.For the case of ε = 0, SDSs only exist in the semi-
infinite gap, the power P is monotonically decreasing with increase
of � and terminates at � = 2.83, as shown in Fig. 2(a). In the high
power region: � < 1.45, surface solitons cannot stably exist. Fig. 2(c)
plots the profile of soliton for � = 1.42 (point A in Fig. 2(a)). The cor-
responding soliton propagation is shown in Fig. 2(f). We  can see
in this figure that the unstable soliton can propagate for a certain
distance at the interfaces, drift across the dual frequency lattices,
and shift away from the interface to the inner lattice during propa-
gation. In the moderate power region: 1.45 ≤ � ≤ 2.47, the surface
solitons can stably transmit. The surface solitons profile of a stable
example (� = 2.15 point B in Fig. 2(a)) is showed in Fig. 2(d) and the
soliton propagation for � = 2.15 is shown in Fig. 2(g). As an exam-
ple for unstable soliton, we choose � = 2.55 (point C in Fig. 2(a)).
In such case, the soliton profile is shown in Fig. 2(e) and the soli-
ton propagation for � = 2.55 is showed in Fig. 2(h). The unstable
soliton can propagate for a small distance at the interfaces, and
decay apparently in dual frequency lattices. In addition, it can be
seen from Fig. 2(c)–(e) that the shape of SDSs is centrosymmetric
for � = 1.42 in the asymmetric spatial composite lattices; with the
increasing of propagation constant �, SDSs reduce in amplitude
and its width is broadened, SDSs shape is noncentrosymmetric,
and SDSs show pedestal in the dual frequency lattices. Fig. 2(b)
shows the perturbation growth rate Re(ı) with propagation con-
stant �. The solitons cannot stably transmit for the Re(ı) larger
than 0 in the regions: � < 1.45 and 2.47 < � ≤ 2.80. However, we
can see in Fig. 2(a) that the power of SDSs monotonically decreases
with propagation constant when � < 1.45, namely their negative
slope of power diagram (dP/d�  < 0). In the region: � < 1.45, this
instability is different from the Vakhitov–Kolokolov (VK) instability
caused by the positive slope of power curve [24,25]. For the nega-
tive slope of power diagram (dP/d� < 0) and Re(ı) = 0 in the region:
1.45 ≤ � ≤ 2.47, the SDSs can stably exist, which accords with the
VK criterion.

Fig. 3(a) presents the power P versus propagation constant � for
a positive defect (ε = 0.5). With the increase of defect depth, SDSs
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