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a  b  s  t  r  a  c  t

The  inverse  problem  has  been  widely  used  in  optical  design,  image  processing  and  many
other  fields.  This  study  is  to employ  an analytical  approach  to  reconstruct  the  initial  distri-
bution  of the  fractional  sub-diffusion  model  with  Caputo’s  definition  of  fractional  derivative
in time.  The  basic  strategy  is to solve  the corresponding  direct  problem  via  separation  of
variables  and  Laplace  transform  and  then  to  convert  the initial  inverse  problem  into  an
integral  equation  of  the  first  kind.  The  key  point  is that  we  employ  the Picard’s  theorem
to  design  an  analytical  solution  of  initial  diffusion  distribution.  The  proposed  scheme  is
tested  to some  benchmark  problems.  Numerical  results  show  that  the analytical  approach
performs  efficiently.

© 2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Recent decades have witnessed an increasing application of fractional derivative in a wide range of diverse fields such
as physics [1], finance [2–4], and hydrology [5,6], to mention just a few. Since 1980s, time-fractional diffusion equations
have been investigated in great details by Wyss [7], Nigmatullin [8], Mainardi [9], Metzler et al. [10] and, more recently,
Nigmatullin [11] and Angulo et al. [12]. These studies show that the spatial variance of the foundation solution is proportional
to a fractional power of time. Later on, space-fractional diffusion equations have been investigated by Gorenflo et al. [13].

It has long been known that complex fluids cannot be accurately described by Fick’s Law and Newtonian constitutive equa-
tion. Hence, kinds of fractional calculus models are considered to describe anomalous diffusion. Fomin et al. [14] employed
the time-fractional differential equation to model the non-Fickian mass transport in fractured porous media. Povstenko [15]
described the anomalous heat conduction in an infinite medium with a time fractional derivative. Jiang et al. [16] presented a
fractional diffusion model with an absorption term and modified Fick’s law to describe non-local transport processes in frac-
tal media. It is noted that in all these studies parameters of governing fractional equations, initial and boundary conditions
are assumed already a priori known, therefore, fractional calculus models can be established. However, these parameters
and conditions are often unknown in the real world applications. This gives rise to essentially important inverse problems
of fractional-order partial differential equations.
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Cresson [17] investigated inverse problem of fractional calculus variations for partial differential equations to find out
their Lagrangian structure. Murio [18] investigated the numerical solution of the time fractional inverse heat conduction
problem (TFIHCP) on a finite slab in the presence of measured noisy data. Zhang and Xu [19] considered an inverse source
problem of a fractional diffusion equation. Zhang and Wei  [20] presented a new regularization method for solving a time-
fractional inverse diffusion problem. Cheng et al. [21] analyze the uniqueness of an inverse problem for a one-dimensional
fractional diffusion equation. Lukashchuk [22] estimated the parameters in fractional sub-diffusion equations by the time
integral characteristics method. Yang [23] discussed the stability of the inverse source problem for time fractional diffusion
equation. To our best knowledge, it is, however, worthy of noting that by now few work has been done on initial inverse
problems of anomalous diffusion equations. In this study, we  will develop an analytical technique to solve initial inverse
problem of time fractional diffusion equation, which, in recent years, has been a popular model to describe anomalous
diffusion such as solute transport or heat conduction in fractal porous media.

The rest of this paper is organized as follows. In Section 2, the initial inverse problem of the fractional diffusion equation
is described. In Section 3, we employ an analytical approach to reconstruct the initial distribution via separation of variables
and Laplace transform. In Section 4, we examine this analytical approach with some benchmark problems. In Section 5, we
conclude this study with some remarks based on the results reported in this paper.

2. Initial inverse problem of fractional diffusion equation

A time fractional diffusion equation (TFDE) has been explicitly introduced in physics by Nigmatullin [8] to describe
diffusion in special types of porous media which exhibit fractal geometry. In this study, we  use his model to investigate
one-dimensional fractional diffusion equation with Caputo’s definition of time fractional derivative in a bounded domain,
see Eq. (2.1), subject to the Dirichlet initial and boundary conditions (2.2) and (2.3).

C
0D˛

t u(x, t) = a2 ∂2
u

∂x2
, 0 < x < 1, 0 <  ̨ < 1 (2.1)

u|t=0 = �(x), (2.2)

u|x=0 = u|x=1 = 0, (2.3)

where a is a dimensionless diffusion coefficient. The bounded domain is denoted as  ̋ =
{

x : 0 ≤ x ≤ 1
}

. For the details, see
the Appendix. The Caputo’s derivative definition is defined as the formula (A2).

The solution of Eq. (2.1) is unique under the initial and boundary conditions (2.2) and (2.3). For the initial inverse problem,
the initial condition (2.2) is unknown and can be determined by the final distribution assumed as

f (x) = u(x, T). (2.4)

3. Methodology

In this section, we design an analytical approach to reconstruct the initial distribution of the sub-diffusion model men-
tioned above from the final distributionf (x) = u(x, T).

3.1. Reconstruction of the initial distribution

By using the separation of variables, the solution to Eq. (2.1) is separated in terms of time and space variables by

u(x, t) = X(x)V(t). (3.1)

Substituting (3.1) into Eq. (2.1), we have

C
0D˛

t V(t)

a2V(t)
= X

′′
(x)

X(x)
= −�. (3.2)

The corresponding eigenvalue problem is given by

X
′′
(x) + �X(x) = 0. (3.3)

Equation (3.3) has nontrivial solutions if and only if the eigenvalue � is greater than zero. Hence, the solution to Eq. (3.3) can
be expresses as the following form

Xn(x) = A cos(
√

�x) + B sin(
√

�x),

where A and B are constants. From the boundary condition (2.3), we have X(0) = X(1) = 0, then we  can obtain the solutions
to Equation (3.3) in the form

Xn(x) = Bn sin n�x, n = 1, 2, · · ·.  (3.4)
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