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a  b  s  t  r  a  c  t

In  this  paper  we  analyze  the  spectral  properties  of undulator  radiation  with  an  electromagnet  undulator
for  electron  injected  off the undulator  axis.  The  electromagnet  undulator  is  self  bi-harmonic  for  locations
near  to  the  electromagnet.  The  electrons  execute  additional  betatron  oscillation  when  it injected  off  the
undulator  axis.  It is observed  that  the  electromagnet  undulator  can  be used  for  harmonic  lasing  free
electron  laser  operates  at the  cost  of betatron  oscillations  for electron  injected  off  the axis.
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1. Introduction

There are interests in the study and design of micro-undulators
for free electron laser and synchrotron radiation applications. A
free electron laser with a micro-undulator required low electron
beam energy and operate as a desktop system. In past, a number of
micro-undulator designs based on electromagnet undulator have
been studied and reported [1–8]. Works on pulsed ferromagnetic
core electromagnet [9], tunable micro-undulators for free electron
lasers are also studied [10]. The electromagnet wiggler from cop-
per foil windings is reported. The design is based on a concept that
combines two conducting foils in backward and forward directions
[11]. An alternate design on electromagnet wigglers is presented
[12]. The small period electromagnet undulator with iron free and
thin wires is also reported [13]. The permanent magnet assisted
electromagnet wiggler has been developed [14]. There are high cur-
rent pulsed wire designs [20]. Electromagnet helical micro-wiggler
[21,22] and staggered ferromagnetic core arrays are immersed in a
sinusoidal field [23]. Harmonic undulator radiations with constant
magnetic field are recently presented by Jeevakhan et al. [24].

In this paper we reconsider the theory of spectral properties
of undulator radiation based on electromagnet micro-undulator
[1–8]. In this schematic copper conductor of finite width runs
alternatively between ferromagnetic lamination a core. The design
studies of this electromagnet undulator are based on the calculation
of the side leakage flux under the assumption of infinite permeabil-
ity of the ferromagnetic lamination cores. Recently Huse et al. [8]
have improved and alternate design of electromagnet undulator.
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In this paper we study the bi-harmonic properties of this electro-
magnet undulator for the two optimization model study by Radack
et al. [4] and Huse et al. [8]. In the case of permanent bi-harmonic
undulator schemes, one has to suitably locate the ferromagnetic
shims in order to make it operate as bi-harmonic [15–19]. The
bi-harmonic-undulators are useful for harmonic lasing of the free
electron laser. The electromagnetic undulator is self bi-harmonic
when electron beam is injected near to the electromagnet. When-
ever the relativistic electron beam is injected off the axis, it gives
rise to betatron oscillations and the intensity at the fundamental
and its harmonics decrease. In Section 2 we develop the theory
of bi-harmonic undulator and include the important effects of the
betatron motion for off-axis electron beam injection. The results of
the analysis are presented in Section 3.

2. Undulator radiation

In the air gap region of the electromagnet undulator, the mag-
netic field is expressed [1–8].
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where I is the current passing in copper plates, �u is the undulator
period, ı is the air gap between two copper plates, h is the thick-
ness of the copper plate and �0 is the permeability in free space.
Rewriting k = 1, 2 terms in Eqs. (1) and (2) we get,
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Using Eq. (4) in Eq. (3) we get,
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Denoting,
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Eq. (5) can be written as,
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Eq. (6) is valid for regions away from the undulator axis i.e. y /= 0.
The on-axis electron trajectories can be found from the Lorentz

force equation for y = 0.
This is given by,
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The electron axial velocity can be determined from conservation
of energy i.e. �2 = 1/(1 − ˇ2) and we get,
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where K1 and K3 define the undulator parameters of the respective
fields and we have dropped the electron velocity modulation at
˝u ± 3˝u from our analysis.

Eq. (6) represents the electromagnet undulator near the magnet
surface which is away from the undulator axis i.e. y /= 0. It has
two field components. The first one is the oscillation at ˝u and

the second field component at the third harmonic 3˝u To satisfy
Maxwell equations, we rewrite Eq. (6) as.
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With small argument expansion of the hyperbolic functions, Eq. (9)
reads,
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Now using Lorentz force equation and solve it we get.
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We assume that the motion can be decomposed x = x0 + x1 and
y = y0 + y1 where x0 and y0 are the reference trajectories for field
represented at y = 0 and x1 and y1 additional motions arising due
to additional off-axis field in Eq. (11). For a field specified in Eq. (6),
y = 0 and x0 is expressed in Eq. (7) extracting the additional betatron
motion we find that [26],
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The betatron oscillations are described by,
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The solution to Eq. (12) gives,
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˝1

sin(˝ˇt)
(13)

where x1(0) and y1(0) represent the off-axis positions from the
undulator axis. ẋ1(0) and ẏ1(0) describes the electron injection
angles. If injection angles ẋ1(0) = ẏ1(0) = 0, then solution

x1(t) = x1(0)

y1(t) = y1(0) cos(˝ˇt)
(14)

The electron trajectory is now described by,
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