

ScienceDirect

Bacterial chromatin: converging views at different scales Remus T Dame¹ and Mariliis Tark-Dame²

Bacterial genomes are functionally organized and compactly folded into a structure referred to as bacterial chromatin or the nucleoid. An important role in genome folding is attributed to Nucleoid-Associated Proteins, also referred to as bacterial chromatin proteins. Although a lot of molecular insight in the mechanisms of operation of these proteins has been generated in the test tube, knowledge on genome organization in the cellular context is still lagging behind severely. Here, we discuss important advances in the understanding of threedimensional genome organization due to the application of Chromosome Conformation Capture and super-resolution microscopy techniques. We focus on bacterial chromatin proteins whose proposed role in genome organization is supported by these approaches. Moreover, we discuss recent insights into the interrelationship between genome organization and genome activity/stability in bacteria.

Addresses

- ¹ Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Leiden. The Netherlands
- ² Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands

Corresponding authors: Dame, Remus T (rtdame@chem.leidenuniv.nl) and Tark-Dame, Mariliis (m.tark@uva.nl)

Current Opinion in Cell Biology 2016, 40:60-65

This review comes from a themed issue on **Cell nucleus**Edited by **Ulrike Kutay** and **Orna Cohen-Fix**

http://dx.doi.org/10.1016/j.ceb.2016.02.015

0955-0674/© 2016 Elsevier Ltd. All rights reserved.

Introduction

Every organism is faced with the challenge of folding of its genome into a confined volume, while maintaining genome activity and imposing functional organization. Bacterial genomes of model organisms such as *Escherichia coli*, *Bacillus subtilis* and *Caulobacter crescentus* are in the order of megabasepairs in size (corresponding to a linear length in the order of millimeters) and they occupy about one third of the volume of the bacterial cell, which is in the order of μ m³. The folding and functional organization of bacterial genomes occurs in a hierarchical manner across different length scales $[1,2^{\bullet\bullet},3^{\bullet\bullet},4^{\bullet\bullet}]$. An important role is attributed to a group of small, abundant, generally basic proteins, which — akin to histone proteins in

eukaryotes — act upon genomic DNA to reduce its effective volume, and to generate functional compartmentalization of the genome [5–8]. Generally, these proteins are referred to as Nucleoid-Associated Proteins (NAPs) or bacterial chromatin proteins. Although the architectural properties of many NAPs have been characterized in detail, it has been difficult to investigate their roles in vivo due to functional redundancy, as well as the pleiotropic effect of deletion or overexpression of many of these proteins. During the last ten years genome-scale studies of protein binding and gene expression have started to reveal the targets of these proteins, mostly in E. coli [9-12]. These binding maps have yielded models of the involvement of these proteins in functional genome organization [13]. Following pioneering studies of eukaryotic genome organization using Chromosome Conformation Capture technology based studies [14–16], three-dimensional information on genome conformation in the bacterium C. crescentus became available in 2011 [17]. Since then, several other studies have yielded increasingly detailed knowledge of genome folding in bacteria, including the involvement of specific NAPs [2*,3*,4**]. In parallel, super-resolution microscopy has evolved as powerful tool and has been used to investigate ultrastructural details inside bacterial cells at resolutions in the order of tens of nanometers [18,19]. Over the last few years the application of Chromosome Conformation Capture technologies and super-resolution microscopy has strongly advanced knowledge of genome organization mediated by different NAPs in vivo. Here, we discuss the implications of these recent findings, evolving models of bacterial genome organization and directions for future studies.

Global shape of the bacterial nucleoid

Chromosome Conformation Capture technologies provide insight in three-dimensional genome folding by estimation of contact frequencies for genomic sequences in the cell. These technologies rely on chemical crosslinking of the genomic material (i.e. DNA and associated proteins) in vivo, followed by genome fragmentation and ligation of cross-linked fragments, often followed by deep-sequencing [14]. Already in the proof-of-principle study of the C. crescentus nucleoid [17] several global features of the organization of the nucleoid were detected. The circular genome forms an elongated structure between ori attached at one of the poles and ter located at the opposite pole. In this configuration interactions between genomically distant loci on the right and left arms occur, reflecting close proximity of the right and left arms extended between the poles. Modeling of

nucleoid structure — using the contact frequencies from the genome-wide interaction map as constraints reflecting physical distance — suggested helical organization with the two arms folded around each other similar to the fluorescence microscopy observations in other bacteria (see below). A more recent study of the C. crescentus nucleoid achieved much higher resolution [2**]. It confirmed the helical organization. In addition more than 20 Chromosomal Interaction Domains (CID's), regions of the genome within which loci interact more frequently with each other than with loci in other domains, were identified. CID's ranged in length from 30 to 420 kb. These structures and their boundaries are re-established following replication. Boundaries of CID's seem to correlate with expression of highly expressed genes. Inhibition of transcription using rifampicin, a drug with potential pleiotropic effects, disrupts CID boundaries. Also moving of a locus with highly expressed genes into a poorly expressed region of the genome, results in the generation of a new CID boundary. Additional studies are needed to unambiguously determine the nature of CID boundaries. The binding of NAPs might also be involved in generating boundaries. Two proposed architectural components of the nucleoid (HU and SMC) were explicitly investigated, but were found not to be involved in boundary formation. Instead, HU facilitates genome compaction in vivo, by promoting short-range contacts along the genome, confirming a microscopy study of local genome conformation [20] and in vitro properties of the protein [21,22]. Absence of SMC, which is known to form ring-like structures around DNA [23], potentially acting as a bridge between two DNA duplexes reduces the frequency of interactions between the arms, while increasing the range of loci exhibiting interactions. This suggests that in *C. crescentus* SMC does not compact DNA, but rather is important in aligning the chromosome arms, by mediating arm-arm contacts.

Two very recent independent high-resolution Chromosome Conformation Capture studies on the B. subtilis nucleoid reach similar conclusions in relation to global organization of the genome [3",4"]. The B. subtilis nucleoid exhibits interactions among loci along and between the two chromosome arms, corresponding with an overall chromosomal configuration in which the arms are extended between *ori* and *ter* at opposite ends of the cell. Also, CID's as observed in *C. crescentus*, ranging in length from 50 to 300 kb are detected in both studies [3,4,4,1]. Although 60% of the CID boundaries also correlate with highly transcribed genes [3**,4**], other barriers (30%) correlate with regions of higher than average AT-content, bound by the NAP Rok [3,24]. The large interaction domains seen in recent Hi-C studies could point at organization of the B. subtilis genome in large macrodomains as described over a decade ago in E. coli [25]): the *ori* domain encompasses a region of ~ 1.5 Mbp, the smaller ter domain is \sim 500 kbp in length and located centrally along the arms the left and right macrodomains exhibit close juxtaposition [3**]. In E. coli macrodomains have been operationally defined as regions with high internal frequency of recombination [26]; the nature of macrodomain boundaries in E. coli is not known. A crucial role in genome organization is attributed to ParB, which according to the prevailing model nucleates binding at parS sites, and forms extended filaments along DNA, possibly involving DNA bridging [27–29]. An alternative model explains ParB spreading around parS by caging, obviating the need for filament formation or DNA bridging [30]. ParB binding is required for SMC recruitment [31,32] and alignment of the two chromosomal arms [3°,4°]. Both studies further dissect the internal organization of the ori domain, revealing the existence of hairpin-like folds within this domain [3°,4°], mediated or stabilized by ParB and SMC, which were experimentally mapped within the folded domain by Chromatin Immuno Precipitation (ChIP) [3**]. Chromosome Conformation Capture studies have also been carried out on fast growing E. coli cells and cells with artificially induced starvation [33]. Whereas these studies detect the ori and ter domains, no further internal organization — as seen for the other investigated species — is captured. It is to date unclear whether this is due to a fundamental difference in organization, related to the fact that the cells are not synchronized or — in part — a consequence of the high-salt nucleoid isolation procedure that yields swollen nucleoids, attributed to dissociation of DNA binding proteins [34]. SeqA and MatP, two non-classical NAP's associated with the ori and ter domains [1], respectively, mediate interactions in trans that shape these domains [33].

Using conventional fluorescence microscopy it is hard to resolve much detail in the bacterial nucleoid due to its small size and due to limited resolution. It was suggested a decade ago based on deconvolved fluorescence microscopy images that nucleoids stained by incorporated fluorescent nucleotides in B. subtilis are helically organized [35]. Similar global structure was independently identified in Chromosome Conformation Capture studies [3°,4°]. Helical organization was also observed in similar microscopy studies of nucleoids in E. coli [36,37°], stained using NAPs fused to fluorescent proteins (FPs). Superresolution microscopy allows visualization of features much smaller than the nucleoid [18,19], detection of heterogeneity in nucleoid density and spatial proteindistributions. In a pioneering study in E. coli the location of different NAPs fused to photoactivatable FPs (PA-FPs) was determined. The majority of NAPs investigated (HU, IHF, FIS and StpA) are found scattered throughout the nucleoid [38]. HU-PA-FPs exhibit a similar scattered distribution in C. crescentus [39]. The H-NS-PA-FP fusion investigated in E. coli behaved different from the other NAP-PA-FPs studied and was found to localize in two dense clusters per genome equivalent [38]. This behavior of the H-NS-PA-FP fusion — although surprising — was

Download English Version:

https://daneshyari.com/en/article/8465145

Download Persian Version:

https://daneshyari.com/article/8465145

<u>Daneshyari.com</u>