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a  b  s  t  r  a  c  t

We  derived  analytical  formulae  of anomalous  hollow  beams  (AHBs)  passing  through  the  turbulent  biolog-
ical tissues  based  on  the  extended  Huygens–Fresnel  integral  formula.  With  the  help  of  these  formulae,
we  investigate  the  propagation  properties  of  AHBs  in  turbulent  biological  tissues,  the  irradiance  and
spreading  properties  of  AHBs  in  turbulent  biological  tissues  are  studied  numerically.  It is found  that  the
circular  and  elliptical  AHBs  eventually  become  Gaussian  beams  in  the  far field  and  the  central  irradiance
of  the AHB  rises  more  rapidly  as the value  of  C2

n grows.  We  also  calculate  the formulae  of  the  effective
beam  size  of  AHB and  find  that finally  Wxz becomes  equal  to Wyz in  turbulent  biological  tissues  which
can  be  used  to  explain  the beam  spot eventually  becomes  circular  under  the influence  of  turbulence  of
biological  tissues.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Dark hollow beams with zero central intensity have attracted
much attentions due to its wide applications in atomic optics, free
space optical communications, binary optics, optical trapping of
particles and medical sciences [1–3]. There are many kinds of hol-
low beams, such as Hermite–Gauss beams, Laguerre–Gauss beams,
Hollow Gaussian beams, Bessel–Gauss beams, Bessel-like beams,
and so on, while one of them is very different from others which
is named as anomalous hollow beam (AHB). The main difference
between conventional dark hollow beam and AHB is that there is
an elliptical solid core at the beam center of AHB. In 2005, Wu  et al.
first observed an anomalous hollow electron beam in an experi-
ment [4], which can be used for studying the transverse instability
and provide a powerful tool for studying the linear and nonlinear
particle dynamics in the storage ring. In 2007, Cai proposed a the-
oretical model to describe an AHB [5]. After that, the propagation
properties of AHB in free space [6] and uniaxial crystals [7] are stud-
ied. Although there are a lot of researches about AHBs [8–12], the
exploration is still far from complete.

Recently, with the development of molecular biology and
medicine, there is an urgent need to understand the living
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tissues, such as the changes during the process of development
of embryos and the physiological and pathological changing pro-
cesses of animal tissues. Due to the light of the abroad important
applications, great efforts are addicted to the beams propagating
through tissues [13–16]. In 1996, Schmitt and Kumar found that
the structure function of refractive-index inhomogeneities in mam-
malian tissues fits the classical Kolmogorov model of turbulence
[17].

In this paper, we  study the propagation of an AHB passing
through turbulent biological tissues. We  derive analytical formu-
lae of AHB in turbulent biological tissues. Some numerical examples
are given to illustrate the propagation properties of an AHB in bio-
logical tissues.

2. Theory

The electric field of an AHB of elliptical symmetry at z = 0 can
be expressed as superposition of astigmatic Gaussian modes and
astigmatic doughnut modes as follows [5]:
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where w0x and w0y are the beam waist widths of an astigmatic
Gaussian mode in x and y directions, respectively. When w0x = w0y,
Eq. (1) reduces to a circular AHB.
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Based on the extended Huygens–Fresnel integral formula, the
propagation of a laser beam in the turbulent biological tissues can
be described as [18–21].
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In Eq. (3), r = (x,y) and � = (�x, �y) are the position vectors at the
input plane (z = 0) and output plane (z), respectively � (�1, �2, z)
is the second-order correlation at the output plane (z), E(r1,0) is
the electric field of the laser beam at the source plane (z = 0), and
dr1dr2 = dx1dy1dx2dy2. In Eq. (4), C2

n is the structure constant of the
refractive-index of the biological tissues. L0 is the outer scale of
the refractive-index size. ς is related to the fractal dimension of
the tissue which is an indication of the classical turbulent behavior
of biological tissue. 〈ın2〉 is the ensemble-averaged variance of the
refractive index.

Substituting Eq. (1) into Eq. (2), after tedious but straightforward
integration, we obtain the following expression for the second-
order correlation of AHB passing through the biological tissues:
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