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a  b  s  t  r  a  c  t

For  adaptively  learning  the  parameters  of  extreme  learning  machine  (ELM),  a novel  learning  algorithm  is
proposed  on  the  basis  of a multiobjective  membrane  algorithm.  More  specifically,  first,  a  multiobjective
mathematical  model  is established  to  learn  the  parameters  of ELM,  which  is  constructed  by  three  objective
functions.  These  objective  functions  include  the  root mean  squared  error,  L  1 norm  of  output  weights
and  the  number  of hidden  nodes. Second,  a series  of  the  trade-off  solutions  with respect  to  the  above-
mentioned  objective  functions  are  found  by the multiobjective  membrane  algorithm.  Finally,  a  trade-off
solution  with  the best  generalization  performance  of  ELM,  which  is  chosen  from  the Pareto  front  obtained
by  the multiobjective  algorithm,  will  become  the  final  parameters  for initializing  the  ELM  network.  The
simulation  experiments  are run on  the  approximation  of ‘SinC’  function,  real-world  regression  problems
and real-world  classification  problems.  Experimental  results  indicate  that  the  proposed  framework  is
able to  achieve  good  generalization  performance  in  the  most cases  with  many  compact  networks.

©  2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Artificial neural networks (ANNs) are known as universal
approximates and parallel distributed processing models which
have been applied widely in many application fields such as clas-
sification, forecasting, optimization and system identification and
so on [1,2]. When ANNs are employed to solve the real-world
problems, they need to be firstly configured, including an appro-
priate network model, network topology and efficient training
algorithm [3–6]. However, the good or bad configuration of ANNs
will influence directly on their generalization performance. For
example, unnecessary input weights and thresholds of ANNs not
only increase the complexity of the model, but also increase the
training time to unknown data. Traditional training algorithms such
as backpropagation (BP) are usually slow and may  get stuck in local
minima. They make the network model to have a non-optimal per-
formance, and the network model may  suffer from the overfitting
phenomenon (the learning model will have good results on train-
ing samples, but it will have bad results on test samples). These
problems heavily limit the practical applications of ANNs.

A new and fast learning strategy is presented for a single
hidden layer feedforward neural network, called extreme learn-
ing machine (ELM) [1,7]. Unlike traditional ANNs, ELM randomly
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chooses input weights and thresholds, and the Moore–Penrose
(MP) method is employed to compute its output weights. However,
in a given training cycle, the fixed parameters of ELM may  not meet
the optimum performance. Moreover, a small complex ELM leads
to the limited capacity which can not provide good generalization
performance. In contrast, a large one may  have the good compu-
tation capacity, but it has some redundant network connections.
At present, input weights and a structure of ELM are determined
according to some priori knowledge. This way spends too much
time on learning to adjust network configurations. And it is not con-
ducive to the output stability of ELM. Recently, many researchers
have proposed various effective learning algorithms which learn
the parameters of the ELM in order to improve the generalization
performance with a reasonable compact structure [8–12]. There-
fore, the effective and automatic design of the ELM configuration
has become a research topic.

In order to deal with the above dilemma more effectively, the use
of evolutionary approaches to configure ELM has received increas-
ing attention, because these approaches have a number of intuitive
advantages without the priori knowledge in this domain [13,14].
Nowadays, evolutionary algorithms, including genetic algorithms
(GA) [15,16], particle swarm optimization (PSO) [17], and differen-
tial evolution (DE) [18] and so on, are utilized to adaptively learn
the configuring parameters of ELM. Therefore, to ensemble the
self-learning ability of ELM and the adaptive ability of evolution-
ary algorithms are proposed, named as an evolutionary extreme
learning machine. The evolutionary extreme learning machine may
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automatically adjust the input weights, thresholds and the struc-
ture of ELM based on the sample data. It is worth pointing out that
each solution, which includes the input weights, thresholds and
the structure of ELM, is attained in the multi-dimensional solutions
space by the evolutionary algorithm. In [9], a single-objective DE
algorithm was employed to tune input weights and thresholds of
ELM, called E-ELM. In [10], a new evolutionary ELM based on PSO
was presented in prediction task. In [11], a combination of Integer
Coded GA and PSO, coupled with the ELM had been used for gene
selection and cancer classification. In [19,12], an optimally pruned
ELM was proposed to improve the generalization performance of
ELM by pruning the useless neurons. In [8], a structure-adjustable
online learning neural network (SAO-ELM) based on the ELM with
quicker learning speed and better generalization performance was
proposed. These experiences are very useful for improving the
generalization performance of ELM. However, previous studies to
evolve the parameters of ELM consider only the generalization per-
formance of the network. Moreover, L 1 norm of output weights
and the number of hidden nodes have a direct impact on the overall
performance of the network.

This paper aims to study whether the generalization perfor-
mance of ELM can be further improved by employing a learning
algorithm based on the multiobjective optimization algorithm. In
other words, the learning algorithm is employed to adaptively
learn the configuration of ELM. The detail of the algorithm is dis-
cussed as follows. Three objective functions related to the final
generalization performance of ELM are established, which includes
the root mean squared error, L 1 norm of output weights and
the number of hidden nodes. And the three objective optimiza-
tion problems need to be solved in order to find a suitable ELM
network. On the basis of our previous work [20,21], a multiob-
jective optimization algorithm based on the membrane systems,
called MOMC,  is employed to find a series of trade-off solutions for
the above-mentioned three objective optimization problem. More-
over, one of these trade-off solutions will be chosen according to
the generalization performance of ELM. Subsequently, this learn-
ing algorithm in the simulation is applied to solve a regression
problem of ‘SinC’ and the two real-world problems including the
regression problems and the classification problems from the Uni-
versity of California at Irvine (UCI) repository [22]. The proposed
framework, which is based on MOMC  learning the parameters
of ELM, is compared with the original ELM [7], E-ELM [9] and
NSGAII-ELM (based on NSGAII [23] learning the parameters of ELM),
respectively.

The remainder of this paper is organized as follows. Section 2
presents a brief review including the multiobjective optimization,
ELM, and membrane systems. In Section 3, the hybrid framework of
the multiobjective membrane algorithm and ELM are elaborated.
Comprehensive study and experimental results are discussed in
Section 4, and finally, Section 5 provides the concluding remarks
of the study.

2. Preliminaries

2.1. Multiobjective optimization

Many real-world applications have existed with the compet-
ing multiple objectives simultaneously. This kind of problems,
which include multiple conflicting objective functions, can be
abstracted as multiobjective optimization problems (MOPs) [24].
The mathematical model of a MOP  consists of the objective func-
tions and constraint conditions. In general, the objective functions
are a vector which consists of two or more than two  conflict
objective functions. Moreover the constraint conditions have two
forms including the equality constraints and inequality constraints.

Fig. 1. The mapping between Pareto optimal solution set and Pareto front.

Without the loss of generality, the formal description of a MOP  to
be minimized is given in (1).

F(X) = min{f1(X), . . .,  fm(X)}
s.t. gi(X) = 0, i = 1, . . .,  q,

hj(X) ≥ 0, j = 1, . . .,  p,

Xl ≤ X ≤ Xu, X ∈ Rn, F ∈ Rm

(1)

where X = (x1, x2, . . .,  xn) is a decision vector including n dimensional
decision variables. Xl is the lower boundary of the decision vector.
Xu is the upper boundary of the decision vector. F(X) = (f1(X), . . .,
fm(X)) is an objective vector containing m objective functions. gi(X)
denotes the ith equality constraints. hj(X) denotes the jth inequality
constraints.

In order to understand the process of solving the multiob-
jective optimization problem, some definitions of multiobjective
optimization are given as follows.

Definition 1 (Pareto-dominate).  A decision vector X = (x1, x2, . . .,
xn) is said to dominate the other vector V = (v1, v2, . . .,  vn), if and
only if both the statements below are satisfied.

∀i ∈ 1, 2, . . .,  n : fi(X) ≤ fi(V)
∧

∃j ∈ 1, 2, . . .,  n : fj(X) < fj(V)

(2)

Definition 2 (Pareto-optimal set, X*). If no decision vector is dom-
inated by the other decision vectors in the set �, these decision
vectors constitute a Pareto-optimal set, denoted by X* and shown
on the left side of Fig. 1. The mathematical expression is described
as X* = {x ∈ �,  x′ ∈ �|  ¬ ∃ x′, x′ ≺ x}.

Definition 3 (Pareto front, PF).  All decision vectors in X* are
mapped from the decision space to the objective spaces. Pareto
front in the objective spaces is shown on the right side of Fig. 1. Its
mathematical expression is described as PF = f(x)|x ∈ X*.

2.2. Extreme learning machine

To overcome the slowly learning ability of traditional opti-
mization techniques, Huang et al. [7] proposed ELM to train a
single-hidden layer feedforward neural network (SLFNN) as shown
in Fig. 2. Unlike the existing learning algorithm of SLFNN, the

Fig. 2. A standard structure of ELM.
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