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a  b  s  t  r  a  c  t

The  electromagnetic  (EM)  wave  propagation  through  an  anisotropic  magnetized  plasma  layer  is  studied
using  the  finite-difference  time-domain  (FDTD)  method  based  on the Runge–Kutta  exponential  time
differencing  (RKETD)  technique.  When  the propagation  direction  of the  EM wave  is  perpendicular  to
the  external  magnetic  direction,  Voigt  effect  should  be  considered.  The  RKETD–FDTD  formulations  are
derived  in  detail  and  are  confirmed  by  computing  the  reflection  and  transmission  coefficients  for  the
ordinary  polarized  wave  and  extraordinary  polarized  wave  through  a magnetized  plasma  slab.  Excellent
agreement  between  the  numerical  results  and  the  exact  analytical  solutions  is demonstrated.  The  EM
wave  become  partly  longitudinal  and  partly  transverse  in  magnetized  plasma  medium  due  to the  Voigt
effect  are  also  proved.
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1. Introduction

The finite-difference time-domain (FDTD) method is a widely
used numerical technology to analyze electromagnetic (EM) wave
radiation, propagation and scattering problems [1,2]. It has been
used in a wide range of applications including modeling and design
of microwave structures, pulse propagation in dispersive media and
many other applications. During the past decade, the FDTD method
has been used to simulate the transient solutions of electromag-
netic wave propagation in various dispersive media. Plasma is a
frequency-dependent dispersive medium, which can be modeled
using the FDTD method. The frequency dependent FDTD formu-
lation was first proposed by Luebbers et al., and the method is
therefore known as the recursive convolution (RC) FDTD method
[3,4]. Other algorithms include the auxiliary differential equation
(ADE) FDTD method [5],  the Z transform (ZT) FDTD method [6].
Many efforts have been devoted to improve the efficiency and
accuracy of the above methods. These algorithms include the piece-
wise linear recursive convolution (PLRC) method [7],  trapezoidal
recursive convolution (TRC) FDTD method [8,9], the current den-
sity convolution (JEC) FDTD method [10], piecewise linear current
density recursive convolution (PLCDRC) FDTD method [11], expo-
nential time differencing (ETD) FDTD method [12], Runge–Kutta
exponential time differencing (RKETD) method [13] etc. All of the
above FDTD methods for magnetized plasma media require that the
external magnetic field direction must be parallel to the direction of

∗ Corresponding author.
E-mail address: sliu@ncu.edu.cn (S. Liu).

propagation, which is a serious limitation. For many practical cases
of interest, however, the angle between the external magnetic field
direction and the direction of propagation is perpendicular. The
electric field vector of the incident wave can be polarized either
parallel or perpendicular to the magnetic axis. The wave with its
electric field vector parallel to the magnetic field is called the ordi-
nary wave. The wave with its electric field vector perpendicular to
the magnetic axis is called the extraordinary wave [14].

In this paper, the RKETD–FDTD is extended to analyze the
polarization characteristics of EM wave propagation in magne-
tized plasma with perpendicular magnetic declination. When the
propagation direction of the EM wave is perpendicular to the exter-
nal magnetic direction, Voigt effect should be considered. The
equations for magnetized plasma are derived in detail and are con-
firmed by computing the reflection and transmission coefficients
for the ordinary polarized wave and the extraordinary polarized
wave through a magnetized plasma layer. Excellent agreement
between the numerical results and the exact analytical solutions
is presented. The EM wave become partly longitudinal and partly
transverse in magnetized plasma due to the Voigt effect are also
proved.

2. Computational theory and RKETD–FDTD formulation

The time-dependent Maxwell’s curl equations and constitutive
relation in magnetized plasma are given by

∇ × H = ε0
∂E
∂t

+ J, (1)
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Fig. 1. Coordinate system used in analysis of EM waves that propagate in magne-
tized plasma.

∇ × E = −�0
∂H
∂t

, (2)

dJ
dt

+ �J = ε0ω2
pE + �b × J, (3)

where E is the electric field, H is the magnetic intensity, J the polar-
ization current density, ε0 the permittivity of free space, �0 the
permeability of free space, � the electron collision frequency, ω2

p
is the square of plasma angular frequency, �b = eB0/m the electron
gyrofrequency, B0 the external static magnetic field, and e and m
are the electric charge and mass of an electron, respectively.

Assume that the propagation direction of the EM waves is per-
pendicular to the external biasing field. To simplify the algebra, a
Cartesian coordinate system where the x-axis lies along the exter-
nal static magnetic field B0 and where the z-axis lies along vector
k (Fig. 1) is chosen. There are two choices: E can be parallel to B0
or perpendicular to B0.

If E is parallel to B0, the wave in this case is unaffected by
the introduction of the magnetic field B0. As with the longitudi-
nal plasma oscillations for parallel propagation, this is because the
electric field Ex makes the particles move parallel to B0 and there-
fore produces no Lorentz force. The results are the same as EM wave
in unmagnetized media. Eq. (1) is discretized using the Yee grid and
leap-frog integration [1]

En+1
x = En

x − �t

ε0�z
(Hn+1/2

y − Hn−1/2
y ) − �t

2ε0
(Jn+1

x + Jn
x ). (4)

Eq. (3) can be written as

dJx

dt
+ �Jx = ε0ω2

pEx, (5)

if E is perpendicular to B0, the electron motion will be affected by B0.
It turns out that waves with E⊥B0 tend to be elliptically polarized
instead of plane polarized. That is, as such a wave propagates into a
plasma, it develops a component Ez along k, thus becoming partly
longitudinal and partly transverse. To treat this mode properly, we
must allow E to have both y and z components

E = Eyŷ + Ezẑ. (6)

The E-vector of an extraordinary wave is elliptically polarized.
The components Ey and Ez oscillate 90◦ out of phase, so that the
total electric field vector E has a tip that moves in an ellipse once
in each wave period.

The dispersion relation for the extraordinary wave is

c2k2

ω2
= 1 − ω2

p

ω2

ω2 − ω2
p

ω2 − ω2
h

, (7)

where ωh =
√

ω2
p + ω2

c is the upper hybrid frequency.
As a wave propagates through a region in which ωp and ωc are

changing, it may  encounter cutoffs and resonances. The resonance
of the extraordinary wave is found by setting k equal to infinity in
Eq. (7).  So that a resonance occurs at a point in the plasma where
ω = ωh. The cutoffs of the extraordinary wave are found by setting
k equal to zero in Eq. (7),  we  obtain

ω± = 1
2

[
(ω2

c + 4ω2
p)

1/2 ± ωc

]
, (8)

where the subscripts + and − stand for right-hand and left-hand
cutoffs. A wave is generally reflected at a cutoff and absorbed at
a resonance. The reflection is large in the nonpropagation regions
of ω < ω and ωh < ω < ω; the transmission coefficient is large in the
propagation regions of ω < ω < ωh and ω > ω±. The strong absorp-
tion occurs at the resonance point of the upper hybrid frequency,
namely, ω = ωh.

In this case, following equations can be derived from Eq. (1)
using the Yee grid and leap-frog integration [1]

En+1
y = En

y + �t

ε0�z
(Hn+1/2

x − Hn−1/2
x ) − �t

2ε0
(Jn+1

y + Jn
y), (9)

En+1
z = En

z − �t

2ε0
(Jn+1

z + Jn
z ). (10)

Eq. (3) can be written as

dJy

dt
+ �Jy = ε0ω2

pEy − �bJz, (11)

dJz

dt
+ �Jz = ε0ω2

pEz + �bJy. (12)

To derive the RKETD scheme [13], multiplying (5) through by
the integrating factor evt, letting tn+1 = tn + �t, tn+1 = tn + �.  Then
integrating the equation over a single time step from tn to tn+1,
to give

Jn+1
x = e−��tJn

x + e−��t

∫ �t

0

e��F(tn + �) d�, (13)

where F(tn + �) = ε0ω2
pEx(tn + �).

This formula is exact, and the essence of the RKETD methods is
in deriving approximations to the integral in this expression. The
first step is taken to give

K = e−��tJn
x + F(tn, Jx)(1 − e−��t)

�
. (14)

Then the approximation

F(tn + �) = F(tn, Jx) + �

�t
[F(tn + �t,  K) − F(tn, Jx)] + o((�t)2).

(15)

By substituting Eq. (15) into Eq. (13), it yields

Jn+1
x = e−��tJn

x + F(tn, Jx)e−��t

∫ �t

0

e��d�

+ [F(tn + �t,  K) − F(tn, Jx)]
e−��t

�t

∫ �t

0

�e�� d� (16)

After some integral manipulation the component of Jx at n + 1 time
step can be written as

Jn+1
x = e−��tJn

x + (1 − e−��t)
�

ε0ω2
pEn

x

+ (e−��t − 1 + ��t)
�2�t

[ε0ω2
pEn+1

x − ε0ω2
pEn

x ]. (17)
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