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a  b  s  t  r  a  c  t

Based  on  interferogram  frequency  domain  self-filtering  methods,  a simple,  robust  and  effec-
tive  carrier-removal  approach  for carrier  interferogram  analysis  is  proposed.  The  spatial
carrier interferogram  is  firstly  extrapolated  to increase  the  frequency  resolution,  and  a
synthetic  referencing  interferogram  distilled  from  the  extrapolation  interferogram  with
frequency  domain  self-filtering  method.  The  carrier  phase  component  is  removed  by  sub-
tracting  the carrier  phase  extracted  from  the  synthetic  referencing  interferogram  with
fast Fourier  transform  (FFT)  method.  Compared  with  existing  carrier  removal  methods,
numerical  simulations  and  experiments,  the  proposed  method  is effective  and  accurate  for
suppressing  the carrier-removal  error  caused  by the  digitization  of  the interferogram  in  the
Fourier  transform  method  (FTM)  for carrier  interferogram  analysis.

© 2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The Fourier transform method (FTM) of interferogram analysis is one of the most popular phase evaluation methods in
a variety of optical interferometric measurements, and is also suitable for fringe projection profilometry. The FTM was first
demonstrated by Takeda et al. [1] in 1982, and then developed to two dimensions by Bone et al. in 1986 [2]. Subsequently,
many works about the theory and application of the FTM were published [3–7]. The notable advantage of the FTM is that
it can extract phase information from a single interferogram by introducing carrier frequencies, thus it make the measure-
ment dynamic and less sensitive to environmental perturbation, such as acoustics or other vibration. However, in practical
applications, the fringe patterns are captured by 2D solid-state image sensors, such as CCD camera. The digitization of the
interferogram data seriously distorts the retrieved phase and results in a considerable tilt error in the retrieved phase by
introducing a carrier-removal error in the traditional spectrum-shifting method, as discussed by Nugent [8].

In the past two decades, many solutions have been presented to suppress the carrier-removal error. Bone et al. [2] tried
to construct a carrier phase plane from an information-free region in the interferogram by the least-squares fit method to
remove the carrier. Similarly, the least-squares-fit technique was used to obtain a pure carrier phase which is presented by a
bilinear surface to describe the carrier component and noise was  suppressed by phase iteration in [9]. Ferna and Kaufmann
[10] subtracted a reference carrier phase which is calculated from an additional reference interferogram to directly remove
the carrier phase in the spatial domain. However, this method requires an additional pure carrier-frequency interferogram
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which negates the advantage of single-shot measurement in the FT method as mentioned before. In addition, Li et al. [11]
directly regarded the first derivative (average-slope) over a phase map  as the carrier phase component. This method is
fully automatic but the accuracy is dependent on the measured phase distribution. Ge [12] used the piezoelectric actuator
to regulate the carrier-frequency values equal to an integral multiple of the sampling frequency by adjusts the inclination
angle of the reference mirror. However, this device is complicated and time-consuming. Fan et al. [13] described a spectrum
centroid method to suppress the carrier-removal error in the FT method. On the other hand, Zhang and Wu [14] used
Zernike polynomials fitting to approximate the carrier phase distribution. Recently, Du et al. [15] reported a straightforward
carrier-removal technique which is based on zero padding method, for simplicity, it is shorted as “ZPM” method. The carrier-
frequency values with a small fraction are calculated from the extrapolation fringe by FFT algorithm. Then the measured
phase is got by subtracting the pure carrier-frequency phase which is constructed by the calculated carrier-frequencies f0x

and f0y in the spatial domain.
In this paper, we propose a simple, robust and effective carrier-removal approach for carrier interferogram analysis,

which is based on interferogram frequency domain self-filtering methods. The frequency domain self-filtering enhances
the periodic information of the interferogram by amplifying the peaks and attenuating the remaining areas. This method is
more immune to the fractional part of carrier-frequencies f0x and f0y than FTM and ZPM. The proposed method is more than
two orders of magnitude times faster than ZPM because the data quantity of it is much smaller. In this paper, we briefly
denoted the proposed method as “SFM” for distinction. We  firstly discuss the principle of the proposed method; secondly,
some numerical simulations and optical experiments results are shown to demonstrate performance of the proposed SFM;
finally, we conclude all the paper in the conclusion section.

2. Theory analysis

The deformed fringe pattern g(x,y) with linear-carrier is generally expressed as

g(x, y) = a(x, y) + b(x, y) cos
[
2�(f0xx + f0yy) + �(x, y)

]
(1)

where a(x, y), b(x, y) are the background and the modulation amplitude, respectively; f0x and f0y are the introduced spa-
tial carrier-frequencies along x and y directions, respectively; �(x, y) is the modulating phase. The carrier interferogram,
cos

[
2�(f0xx + f0yy)

]
, acts as a carrier information for recording the measured phase data but it will simultaneously intro-

duce a carrier phase component, 2�(f0xx + f0yy), in the phase extraction procedure [16]. Hence the carrier phase component
must be subtracted or removed from the overall phase distribution for evaluation of the phase of the measured phase com-
ponent �(x, y). Since the Fourier transform (FT) decomposes the image in terms of sinusoids, the fringe pattern with a periods
in the spatial domain will have distinct peaks in the frequency domain. The carrier interferogram is processed with the FT
in two-dimension, the first positive spectrum component C(fx, fy) in the frequency domain isolated with a suitable spectral
filter is

C(fx, fy) = F{1
2

b(x, y) exp[ j�(x, y)︸  ︷︷  ︸
irregular part

+ j2�(f0xx + f0yy)︸  ︷︷  ︸
regular part

]} (2)

where F {•} denotes the FT operator. It is clear that the regular and irregular parts of the image can be separated in the
frequency domain, and the measured phase component �(x, y) is given by

�(x, y) = Unwrap

{
tan−1 Im{F−1[C(fx, fy)]}

Re{F−1[C(fx, fy)]}

}
− 2�(f0xx + f0yy) (3)

where U(•) denotes the phase unwrapping operator, the tan−1(•) denotes the arctangent operator, and the F−1{•} denotes
the inverse FT operator. However, the intensity of the fringe pattern is usually recorded by a solid-state image sensor such
as CCD camera in practical applications thus the fringe pattern described in Eq. (1) usually should be further expressed as
discrete form

g(m, n) = a(m, n) + b(m, n) cos
[

2�
(

u0

M
m + v0

N
n
)

+ �(m, n)
]

(4)

where m,  n are integer; M,  N are the numbers of sampling points on the x, y directions, respectively; u0 and v0 are integer
and the values of them are closed to the true carrier-frequency f0x and f0y, respectively. Corresponding, Eq. (2) is given by
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) = F{1
2

b(m, n) exp[ j�(m, n)︸  ︷︷  ︸
irregular part

+ j2�(
u0
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N
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Thus, the error introduced by the spectrum-shifting with traditional FTM is given by [17]
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(6)
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