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a  b  s  t  r  a  c  t

Structure  recovery  is a  widely  used  data  acquisition  way  for scene  analysis.  Factorization
based  methods  have  become  the  mainstream  methods  for structure  recovery  these  years,
which  generally  recover  structures  by  solving  the  rectification  matrix.  However,  these
solutions  will  be  invalid  when  eigen-decomposing  a negative  definite  rectification  matrix.
Hence,  we  present  an  improved  iterative  perspective  factorization  method  in which  struc-
ture and motions  are  directly  solved  by  iteratively  imposing  constraints  rather  than  matrix
decomposition.  Experiments  on both  synthetic  data  and  real  images  show  that  the  pro-
posed  method  can  avoid  the  invalidation  of general  factorization-based  solutions  caused
by failures  and  efficiently  recover  the  geometric  structure,  camera  motion  parameters  and
camera focal  lengths  simultaneously  from  uncalibrated  images  with  fast  convergence  rate,
high  accuracy  and  noise  tolerance.

© 2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

With the growing demand for 3-dimensional (3D) data for virtual reality, 3D printing and archaeology, recovering 3D
structure from multi-view image feature correspondences have been a fundamental problem in computer vision as well
as photogrammetry, known as Structure from Motion (SFM). The factorization framework has been the most influential
method in SFM at present due to its universality and robust noise tolerance.

There have been great efforts towards the factorization framework. Tomasi and Kanade [1] first introduced the factor-
ization method under the orthographic projection model. Poelman and Kanade [2] then extended it to weak perspective
and paraperspective projection models. These affine projection models are approximations of the real camera model, the
perspective projection model, and the camera intrinsic parameters are not taken into account, thus a high accuracy can
hardly be guaranteed. A perspective factorization method based on projective depth estimation was proposed by Triggs [3];
however, the constraints of projective matrix are not taken into account sufficiently. Wang et al. [4] proposed the quasi-
perspective camera model which fills the gap between affine and perspective models. Han and Kanade [5,6] proposed a
perspective factorization method fully considering the constraints of projective matrix, which broadens the horizons of pro-
jective factorization. Furthermore, bundle adjustment [7,8] from photogrammetry has made its way into SFM to estimate
the optimal structure and camera parameters [9]. Lately, incremental or online SFM [10,11] were proposed by researchers,
as well as the ones dealing with missing or uncertain input data [12–17]. Also, researchers [18] find that rigid SFM can be
made robust to challenging intra-category variation for recognition-induced tasks.
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More recently, the attention of the SFM community has been moved to non-rigid SFM (NRSFM) and great achievements
have been made to robustly handle various problems in practical applications [19–24]. Xiao et al. [7] prove that enforcing
both the basis and the rotation constraints leads to a closed-form solution of NRSFM. Akhter et al. [22] propose to treat the
deformable shape as a collection of individual point trajectories. Based on these, Gotardo et al. [19] represent a smoothly
deforming 3D shape as a smooth time-trajectory of a point within a linear shape space, while Hamsici et al. [20] considering
deformations as spatial variations in shape space and enforcing spatial, rather than temporal, smoothness constraints. Addi-
tionally, great blossoms of SFM are also witnessed in vision related fields, such as remote sensing [25], augmented reality
[26], recognition [27] and autonomous driving [28]. However, full matrix factorization for rigid objects is still an important
issue to be considered [29] as a foundation of SFM.

There are two critical steps to obtain the structure under the perspective projection model [30]: (a) to recover a set of
consistent perspective depths, and (b) to recover the camera intrinsic parameters. Up to now, many algorithms [3,5,30–32]
have been presented to approximate projective depths directly from the measurement matrix. Meanwhile, due to the
requirement of camera intrinsic parameters in the normalization process, there are researches recovering structure after
self-calibrating the camera, which inevitably makes SFM more complex. Several methods [5,6,31,33,34] were presented to
recover both structure and camera intrinsic parameters from uncalibrated image sequences following the idea of solving
for rectification matrix by matrix decomposition. This procedure might go invalid in extreme situations when a negative
definite matrix is decomposed as stated in Section 2, which inspired our research in this paper.

In this work we make the following specific contributions. First, we revisit the process of general factorization methods
and analyze the extreme situation in which conventional methods might fail, which is the first attempt to our knowledge.
Second, assuming that the camera focal length is the only unknown and varying intrinsic parameter, we  present a simple but
effective iterative perspective factorization method to simultaneously recover the structure, camera motions and camera
focal lengths from uncalibrated images, while avoiding the camera calibration process, as well as the complex and unstable
rectification matrix solution. Third, we present an explicit experimental study on both synthetic data and real images,
which is evaluated from the aspects of accuracy, convergence rate and noise tolerance. The results are on par with the
state-of-the-art.

2. Problem statement

The goal of perspective factorization is to recover the 3D structure, camera motion and intrinsic parameters from F
uncalibrated perspective images of N 3D object points. The object structure matrix is denoted byS = [S1, · · ·,  Sj, · · ·,  SN], j = 1,
. . .,  N, where Sj is the unknown homogeneous 3D object point vector, Pi (i = 1, 2, . . .,  F) represents the unknown projective
matrix of each image and xj I is the measured homogeneous image point vector. For the real camera projection model, the
relation between object points and image points is
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where �ij is a non-zero scale factor, commonly called the projective depth, W is a 3F × N scaled measurement matrix, P is a
3F × 4 projective matrix and S is a 4 × N structure matrix.

Assuming that Projective Depth Recovery (PDR) has been done by certain algorithm and the scaled measurement matrix
W is obtained, we can decompose it by rank-4 Singular Value Decomposition (SVD), which leads to a result up to a linear
rectification matrix Q as shown in Eq. (2), where Q is an arbitrary 4 × 4 nonsingular matrix.

W = P · S = PQ · Q−1S (2)

The elements M of rotation matrix included in the rectified projective matrix P are orthonormal, and this leads to a linear
equation set MQ (MQ )T = MGMT = C , where G = Q Q T denotes the Gram matrix of Q and C is a diagonally coefficient matrix.
G will be obtained by solving this equation set, and then the final rectification matrix Q is solved by eigen-decomposing G.

Since M contains intrinsic parameters under the perspective model, the diagonal elements of C are unknown and they
cannot be used as constraints. Then, the linear equation set above becomes homogeneous and cannot be uniquely determined
without adding some assumptions. Thus, it makes the solution for the homogeneous problem possess a degree of random-
ness. Moreover, in applications affected by mismatching of some point pairs or strong noises, G cannot be eigen-decomposed
to find the real matrix squared root as it is not positive semi-definite. To solve this problem, positive semi-definite program-
ming [35,36] will be involved in the linear solving process and this will bring in more complexity and computation. Therefore,
the attempts to avoid the process of solving the rectification matrix will be meaningful.

3. Methodology

In this section, an improved iterative perspective factorization method is proposed assuming that PDR has been done
and the scaled measurement matrix is constructed.
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