
Optik 126 (2015) 2788–2792

Contents lists available at ScienceDirect

Optik

jo ur nal homepage: www.elsev ier .de / i j leo

A  computational  photography  algorithm  for  quality  enhancement  of
single  lens  imaging  deblurring

Weili  Lia,∗, Yu  Liua,  Xiaoqing  Yinb, Bin  Wanga,  Maojun  Zhanga

a College of Information Systems and Management, National University of Defense Technology, Deya Road, Changsha 410000, China
b Facility Design and Instrumentation Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 19 May  2014
Accepted 2 July 2015

Keywords:
Single lens imaging
Point spread function
Deconvolution
Optimization

a  b  s  t  r  a  c  t

Modern  single  lens  reflex  lenses  typically  consist  of up  to  two dozen  individual  optical  elements,  the  com-
plexity  of which  is  necessary  to  compensate  for geometric  and  chromatic  aberrations.  This  paper  adopts
one single  lens  to capture  images  instead  of complex  lenses,  and  computational  photography  technique
is  employed  to remove  corresponding  imaging  artifacts.  We  initially  estimate  the  space-variant  point
spread  function  of the  single  lens  by combining  l1/l2 image  and  sparse  kernel  priors.  A fast  non-blind
deconvolution  method  with  hyper-Laplacian  prior  is then  performed  to  recover  clear  image.  Experi-
mental  results  show  that  the proposed  method  is  at par with  state-of-the-art  non-blind  deconvolution
approaches,  especially  with  regards  its  speed  that  is  much  faster  than  that  of existing  methods.
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1. Introduction

All single lens elements with spherical surfaces suffer from
optical aberrations, such as geometric distortions, chromatic aber-
ration, spherical aberration, and coma [1]. Therefore, they cannot
be directly used in high-quality photography. Modern single lens
reflex (SLR) cameras combine different lens elements to optimize
light efficiency and cancel out these aberrations. Despite their bet-
ter geometric imaging properties than earlier lenses, modern lenses
design face high cost and weight problems.

Computational photography has revolutionized photography in
recent years by presenting an integrative technology that com-
bines computer and software technologies with modern sensors
and optics to create new imaging systems and image applications
[2]. Inspired by this idea, this paper proposes an alternative way
of capturing high-quality photographs without complex combined
lenses. Only one simple single lens (plano-convex lens) is used for
imaging, as shown in Fig. 1, and then the ensuing aberrations are
corrected computationally.

The primary challenge in achieving the goal is the estimation
of the complicated PSF caused by single lens aberrations. Proper
image and kernel priors are necessary to improve estimation accu-
racy. Considering realistic implementation, both the deblurring
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performance and deconvolution efficiency are important. Recently,
Schuler [3] and Heide [4] designed single lens cameras, and
obtained clear images by implementing certain algorithms. How-
ever, the methods presented by Schuler and Heide require complex
calibration in estimating PSF and are time-consuming in deblurring
the image, which are impractical in realistic implementation.

In this paper, the l1/l2 image and sparse kernel priors are
combined to estimate space-variant PSF in blind deconvolution.
Such combination can improve estimation accuracy and present
PSF calibration. Fast non-blind deconvolution method based on
hyper-Laplacian prior [5] is then applied to acquire a clear image.
Experimental results show that the proposed method can enhance
deblurring performance and increase the processing speed.

The reminder of the paper is organized as follows: Section 2
reviews related work. Section 3 introduces the blind deconvolution
method for PSF estimation. Section 4 describes the fast non-blind
deconvolution method to recover clear image. In Section 5, exper-
iments are implemented and the experimental results are shown.
Finally, Section 6 concludes this article.

2. Related work

2.1. Image deconvolution

Image deconvolution is a classic problem in image processing.
According to whether the blur kernel is known, the problem can
be classified as blind and non-blind deconvolution. The most basic
non-blind deconvolution methods include frequency-space divi-
sion, the Wiener filter [6] and the Richardson–Lucy algorithm [7,8].
The Richardson–Lucy algorithm has been extended in many ways,
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Fig. 1. (a) Complex modern camera lens with combined optical elements (b) our
self-made camera lens with a single plano-convex lens (with focal length 120 mm,
f/4.5).

such as residual deconvolution [9] and Bilateral Richardson–Lucy
[10]. Popular blind deconvolution methods in recent years mainly
include those that are based on maximum a posterior (MAP)
[11,12], variational Bayesian [13,14] and edge prediction [15,16].

2.2. Prior regularization

Given that image deconvolution is an ill-posed problem, addi-
tional prior knowledge of the original image or the blur kernel is
necessary. Additional prior can disambiguate potential solutions,
obtain an accurate blur kernel and accelerate the convergence pro-
cess.

A few well-known models of image prior include total variation
[17], hyper-Laplacian [5], Gaussian scale mixtures [18].

Some probabilistic priors on image statistics are used to derive
the blur kernel, such as image gradient distribution [16], alpha-
matte constraint [19] and edge profile [20].

Several common assumptions on the blur kernel that con-
strain its form are non-negativity, energy-conserving, sparsity and
smoothness. If some information of the blur kernel is known, the
parametric model can be used directly. Main blur kernel types
include atmospheric, out-of-focus and motion blur [21].

2.3. Correction for aberration

The use of deconvolution algorithms to correct aberrations dates
back at least to the original development of the Richardson–Lucy
algorithm. Renewed interest has been given in solving such prob-
lems by modern techniques, including the removal of color fringing
[22] and chromatic aberrations [20] as well as deconvolution for
spatially varying PSFs [23], for images obtained using complex opti-
cal systems.

Schuler [3] and Heide [4] attempted to address the aberration
correction problem in simple lens imaging. Schuler used point
light sources to measure PSF as a function of image location and
solved demosaicing and deconvolution problems simultaneously
by working in YUV color space. Heide used a convex cross-channel
prior that can be implemented efficiently and with guaranteed
global convergence. Heide also introduced a convex optimization
framework for this prior, which is a key component in achieving
ideal image quality in the presence of large blur kernels.

3. Blind deconvolution for PSF estimation

PSF estimation can be posed as a blind deconvolution problem,
in which only the blurred image y is given. In this paper, blurring
caused by single lens aberrations and chromatic aberrations is con-
sidered. The blurred image y can be described as a convolution of
the latent sharp image x with the latent blur kernel k as follows:

y = k ⊗ x (1)

where ⊗ is the convolution operator.
This section mainly introduces the approach for space-variant

PSF estimation in multi-scale implementation. This problem is
generally solved in the derivative space by the MAP method. We

combine the l1/l2 image and sparse kernel priors, and optimize the
MAP score using the expectation-maximization framework.

3.1. MAPk blind deconvolution

The straightforward approach for blind deconvolution is to
search the MAPx,k solution by(

x̂, k̂
)

= arg max  p (x, k|y) = arg max  p (x, y, k) (2)

MAPx,k pair should minimize the convolution error and have spare
derivatives. Considering that a simultaneous MAP  estimation of
both image and kernel is ill-posed, estimating the kernel alone is
a better choice. Given that the number of parameters to estimate
is smaller than that of image pixel measured, Levin [24] proposed
a simple and practical MAPk algorithm that marginalizes over all
latent images.

k̂ = arg max  p (k|y) = arg max

∫
p (x, y|k) dx (3)

As shown in Eq. (3), to optimize the MAPx score, Levin con-
sidered an expectation-maximization framework that treats the
latent image as a hidden variable and marginalizes over it. This
algorithm alternatives between two main steps. The E-step solves
a non-blind deconvolution problem and estimates the mean image
by the current kernel, with its surrounding covariance. The M-step
determines the best kernel using the image. This step calculates
the mean of estimated image and the covariance surrounding it.
The algorithm is finally defined as follows:

(1) E-step: Considering p (x) = p (x|y, k), compute the mean � and
the covariance C of q(x), which represent the mean image indi-
cated by a kernel and the covariance surrounding it.

(2) M-step: k is found by minimizing.

Eq

[
||k ⊗ x − y||2

]
(4)

Given that Eq. (4) integrates a quadratic term, the mean and
covariance computed in the E-step provide sufficient statistics of
q(x) that is required for the minimization.

3.2. Prior regularization

Our goal is to estimate x and k from the blurred input y. Since
there are many possible combinations of x and k which can explain
the y observation, blind deconvolution is a highly ill-conditioned
problem that requires certain prior regularization to solve it.

3.2.1. Image prior
The major drawback of existing image prior in blind deconvo-

lution is that the minimum of the resulting cost of function does
not correspond to the true sharp solution. In this paper, we use the
image regularization l1/l2 introduced by Krishnan [25], which pro-
vides the lowest cost for the true sharp image and allows a simple
cost formulation to be used for blind deconvolution model.

The scale-variant l1 norm is widely used to impose signal spar-
sity, the norm of which can be minimized by simply reducing the
signal. In an image setting, l1 norm is typically used to penalize high
frequency bands. Given that image noise is present in these bands,
enhancing l1 norm and minimizing the norm is a method of denois-
ing the image. However, in the case of image blur, the opposite
situation holds because blur attenuates the high frequency bands,
thus reducing their l1 norm. Consequently, in a blind deconvolution
setting where the kernel is only loosely constrained, minimizing l1
norm on the high frequencies of the image will result in a blurry
image. The simplest interpretation of the l1/l2 function is that it is a
normalized version of l1, thus making it scale-invariant. If applied
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