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a  b  s  t  r  a  c  t

Linear  canonical  transforms  (LCTs)  are  a  family  of  integral  transforms  with  wide  application  in optical,
acoustical,  electromagnetic,  and  other  wave  propagation  problems.  In  this  paper,  a new  kind  of wave
packet  transform  (WPT)  associated  with  the  LCT  is  proposed,  this  new  WPT  (WPTL)  is defined  based  on
the  ideal  of the  LCT  and  the  WPT.  Some  properties  and  physical  meaning  of  the  WPTL  are  investigated.
In  particular,  we  show  a version  of the resolution  of  the  identity  of  WPTL.  Moreover,  the  relationship
between  the  WPTL  and  the  Wigner  distribution  (WD)  is  derived.  At  last,  we  introduce  the  concept  of  the
fractional  wavepacketgram,  which  is  defined  as the modulus  square  of the  WPTL.  It is proved  that  the
fractional  wavepacketgram  is  a member  of the  Cohen  class  time–frequency  distribution  where  the  kernel
is a  scale  dependent  ambiguity  function.

©  2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

It is well known that the Fourier transform (FT) is an impor-
tant tool for processing stationary signals [1]. However, the actual
signals are often time-varying or non-stationary. For time-varying
signals, the short-time Fourier transform (STFT) is employed and
it typically uses a time window of fixed length applied at regular
intervals to obtain a portion of the signal assumed to be stationary
[2]. The resulting time-varying spectral representation is critical
for non-stationary signal analysis, but in this case it comes at fixed
spectral and temporal resolution. Wavelet analysis presents an
attractive alternative to the STFT by utilizing windows of variable
width, which can effectively provide resolution of varying gran-
ularity [3]. In the past decades, wavelet packet transform (WPT)
has been gained much attention [4–13] and successfully applied in
de-noising, image compression and encryption in wireless commu-
nication [9–11], The reason of its wide usage in signal processing
is that it has some better virtues than wavelet transform (WT), as
it can realize multilevel decomposition and analyze the high fre-
quency that is not achieved in common discrete WT.  According to
the characteristics of a signal, we choose the corresponding fre-
quency subbands by wavelet packet decomposition and improve
the time–frequency resolving ability.
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The classical WPT  is related with FT. The WPT  is the FT of a
signal windowed with a wavelet. As a generalization of the FT,
the FRFT has been widely developed in theory and in application
[14–17]. Recently, the linear canonical transform (LCT) as the gen-
eralization of the FT and FRFT was  introduced during the 1970s
with four parameters, has been proven to be one of the most pow-
erful tools for non-stationary signal processing [17–19]. Now, it
has been applied for filter design, time–frequency analysis, signal
reconstruction, radar system analysis and many others [20–29].

As one of the generalization of the classical WPT, the fractional
WPT  have been introduced [11–13]. Also, several simple property
and applications for fractional WPT  have been discussed. Although
potentially useful for signal processing applications, this transform
appears to have remained largely unknown to the signal processing
community. Especially, the relationship of fractional WPT  with
other time–frequency representations such as Wigner distribution
(WD), the ambiguity function and the spectrogram has not been
studied. In this paper, the WPT  based on the LCT (WPTL) is derived to
solve this problem and to present some new relationships. We  first
propose the new kind of WPT  (WPTL), combining the idea of the LCT
and WPT. Then, we obtain a version of the resolution of the identity
and some properties of WPTL connected with those of LCT and WPT.
In addition, we present a simple and natural relationship between
the WPTL and the WD.  At last, the fractional wavepacketgram is
introduced and analyzed.

The rest of the paper is organized as follows. In Section 2, we
provide a brief review of the WPT  and LCT. In Section 3, the new
definition of the WPT  associated with LCT is proposed, and some
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properties are discussed. The fractional wavepacketgram is defined
and discussed in Section 4. The paper is concluded in Section 5.

2. Preliminaries

2.1. Wave packet transform (WPT)

The short-time Fourier transform (STFT) is the most widely used
method in signal processing for studying non-stationary signals.
The continuous STFT of a signal f (t) is  defined as [2]

STFTf (�, u) = 1√
2�

+∞∫
−∞

g (t  − �) f (t) e−jutdt (1)

where g (t) is the window function. Wavelet analysis presents an
attractive alternative to the STFT by utilizing windows of variable
width, which can effectively provide resolution of varying granular-
ity. The continuous wavelet transform (CWT) of a signal is defined
as [3]

CWTf
(
˛, ˇ
)

= 1√
˛

+∞∫
−∞

f (t) 

(
t − ˇ

˛

)
dt (2)

where t is time,  ̌ is the translation parameter,  ̨ is the scale
parameter and  (t) is the transforming function, called mother
wavelet. Here  ̨ > 0 and   is normalized such that the L2 norm∥∥ ∥∥ = 1.

The WPT  is the combination of STFT and CWT, and it is described
as [4–7]

WPTf
(
u, ˛, ˇ

)
= 1√

2�˛

+∞∫
−∞

f (t) 

(
t − ˇ

˛

)
e−jutdt (3)

In other words, the WPT  is the FT of a signal windowed with a
wavelet that is dilated by  ̨ and translated by ˇ.

2.2. Linear canonical transform (LCT)

The LCT provides a mathematical model of paraxial propaga-
tion though quadratic phase systems. The LCT of a signal f (t) with
parameter matrix A = (a, b; c, d) is defined as [17–19]

FAf (u) = LA [f (t)]  (u) =

⎧⎨
⎩
∫ ∞

−∞
f (t)KA (u, t) dt, b /= 0,

√
dej1/2cdu2

f (du) , b = 0,

(4)

where the kernel function

KA (u, t) =
√

1
(j2�b) e

j1/2[(a/b)t2−(2/b)tu+(d/b)u2]
(5)

where a, b, c, d are real numbers satisfying ad − bc = 1 and LA is
the unitary LCT operator. The kernel has the following properties
[17,27] which will be useful in this paper.

KA (u, t) = KA−1 (t, u) (6)

+∞∫
−∞

KA2 (u, t)KA1 (t, v) du = KA1A2 (u, v) (7)

+∞∫
−∞

KA (u, t)KA
(
u′, t
)

du = ı
(
u − u′) (8)

where the overbar indicates complex conjugate. These two  proper-
ties (7) and (8) actually correspond to the additivity property and
the reversibility property of LCT. We only consider the case of b /= 0,
since the LCT is just a chirp multiplication operation if b = 0. When
A =
(

cos �, sin �; − sin �, cos �
)

, the LCT reduces to the FRFT; when
� = �/2 it reduces to FT. For more properties and the relations with
other transforms about LCT, one can refer to [17–19].

3. Wave packet transform associated with the linear
canonical transform

In this section, we propose a new definition of the WPT  associ-
ated with LCT based on the product of the signal and a local kernel
function. Then, some properties and physical meaning of the newly
defined WPT  (WPTL) discussed, the results show that this kind of
WPT  can be seen as one generalization of the classical WPT. In addi-
tion, a very simple and natural relationship between the WPTL and
the WD is presented.

3.1. The new definition of WPT  associated with the LCT

Definition 1. The WPT  of a signal f (t) associated with the LCT
(WPTL) with parameter A = (a, b; c, d) is defined as

FA
f
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)
= WPTL [f (t)]

(
u, ˛, ˇ

)
=

+∞∫
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 f
(
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)
KA (u, t) dt

=
√

1/ (j2�˛b)ej(d/2b)u2
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/˛
)
f (t) ej(a/2b)t2e−j(1/b)utdt

(9)

where  f
(
t, ˛, ˇ

)
= 1/

√
˛ 
((
t − ˇ

)
/˛
)
f (t) and KA (u, t) is given

by (5).
From the definition and the physical meaning of the LCT [17–19],

the WPTL can be interpreted as the affine transform of the signal
 f
(
t, ˛, ˇ

)
in the

(
u, ˛, ˇ

)
plane. Noted that the WPTL FA

f
, is a

function of time, frequency and scale.
Obviously, when A = (0, 1; −1, 0), the LCT reduces to FT. Accord-

ingly, the WPTL reduces to classical WPT. From the definition of
WPTL (9), we see that the computation of the WPTL corresponds to
the following steps:

(1) a product by a wavelet
(2) a product by a chirp
(3) a Fourier transform (with its argument scaled by 1/b)
(4) another product by a chirp
(5) a product by a complex amplitude factor.

3.2. Some properties of WPTL

In this subsection, some properties of WPTL are investigated
and the proof of some complex properties will be given in detail.
Similarly to the LCT, space shift and phase shift properties with
parameter A = (a, b; c, d) are derived as follows:

FAf (t−t0)

(
u, ˛, ˇ

)
= e−jact

2
0
/2+jcut0FAf

(
u − at0, ˛,  ̌ + t0

)
(10)
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