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Although  private  information  retrieval  and oblivious  transfer  are  equivalent  in  classical  cryptography,  we
show that  the  existence  of secure  quantum  private  information  retrieval  is  necessary  but  not  sufficient
for  secure  quantum  oblivious  transfer,  which  provides  a strong  evidence  of  nonequivalence  of  two  flavors
of oblivious  transfer  at the  quantum  level.
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1. Introduction

Private information retrieval (PIR) [1] deals with a situation in
which there are a huge database and a user who wants to query, and
the user wants to query the database while hiding the identity of
the data-items she is after, not the existence of interaction with the
user (user privacy). Its applications could include patent databases,
stock quotes, media databases, etc.

Oblivious transfer (OT) is an important primitive extensively
used in many cryptographic protocols. There are two major types of
OTs. The original one [2] is referred to as all-or-nothing OT. Another
type of OT is called one-out-of-two OT [3].

In classical cryptography, Crescenzo et al. concluded that
single-database PIR implies OT [4]. They presented a reduction
transforming any nontrivial single-database PIR into OT. In Ref. [5],
it was shown that OT is complete, namely it can be used to con-
struct any other protocol. That implies that there exists a reduction
transforming OT into PIR. This classical reduction chain reveals the
equivalence of the security of PIR and OT protocols at the classical
level.

Given the Lo’s no-go theorem [6], nonrelativistic quantum OT
and PIR are impossible. But intriguingly, He and Wang proposed a
nonrelativistic quantum all-or-nothing OT protocol [7] which does
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not rigorously satisfy the definition of ideal one-sided two-party
quantum secure computation, on which the Lo’s insecurity proof
[6] was based. Thus it could remain unconditionally secure against
the cheating strategy in the Lo’s proof. This result seems to conflict
with the Lo’s conclusion (i.e., secure quantum one-out-of-two OT
and quantum PIR would be possible) if the classical reductions held.

However, it has been realized that “the reductions and relations
between classical cryptographic tasks need not necessarily apply to
their quantum equivalents” [8,9]. In fact, in this paper we intend to
build a PIR protocol on a secure quantum all-or-nothing OT protocol
[7] and another PIR protocol on protocol P in Ref. [8] respectively. It
will be shown that secure quantum OT implies secure quantum PIR.
However if we  build up a one-out-of-two OT protocol built upon
the resultant secure quantum PIR protocol, it does not rigorously
satisfy the definition of ideal one-sided two-party quantum secure
computation, on which the Lo’s insecurity proof [6] was based. In
this sense, secure quantum PIR does not imply secure quantum OT,
i.e., the above classical reduction chain is broken in the present
quantum cryptography case. This result also provides a strong evi-
dence of nonequivalence of two  flavors of oblivious transfer at the
quantum level.

The paper is organized as follows. In Section 2, two quantum PIR
protocols are built upon secure quantum all-or-nothing OT [7] and
protocol P in Ref. [8] respectively. The reduction transforming PIR
into OT will be discussed in Section 3. A conclusion is summarized
in Section 4.
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2. Reduction from OT to PIR

2.1. Quantum PIR protocol based on secure quantum
all-or-nothing OT

Protocol P1:

(1) Bob chooses at random kN bits r1, r2, . . . , rkN ;
(2) For each of these kN bits Bob uses the quantum all-or-nothing

OT protocol to disclose the bit rk to Alice;
(3) Alice and Bob execute postprocessing to the key r1, r2, . . .,  rkN to

obtain the final N-bit key K so that Alice’s known bits in the key
are reduced to 1 bit or a little more by using the similar method
in J-protocol (please see Fig. 1 in Ref. [10]). Bob encrypts his
database with the final key K and Alice obtains the item she
wanted with one of her known bits in K.

One can easily find that the secure quantum all-or-nothing OT
protocol [7] can be used simply as a ‘black box’ primitive to build up
a secure PIR protocol. This reason lies in that we  need not deal with
the details of the secure quantum all-or-nothing OT protocol [7]
when it is used to build up a PIR protocol. Hence the proposed PIR
protocol built upon the secure quantum all-or-nothing OT protocol
[7] is also unconditionally secure against the cheating attack in the
Lo’s proof [6].

2.2. Quantum PIR protocol based on secure quantum
one-out-of-two OT

Protocol P in Ref. [8] has been proved secure against the Lo’s
cheating [6] because it does not satisfy the rigorous definition of
ideal one-out-of-two OT [6] but satisfy the definition of one-out-
of-two OT [11]. We  need not deal with the details of Protocol P in
Ref. [8] so that we simply use it as a black box to build a quantum
PIR protocol.

Protocol P2:

(1) Bob chooses at random 2Ks bits r11 , r12 , r21 , r22 , . . .,  rKs1 , rKs2 ;

(2) For each rj1, rj2, j = 1, 2, . . .,  Ks, Bob uses Protocol P in Ref. [8] to

disclose the secret bit rj
k

to Alice;
(3) Alice and Bob execute postprocessing to the key

r11 , r12 , r21 , r22 , . . .,  rKs1 , rKs2 to obtain the final N-bit key K so
that Alice’s known bits in the key are reduced to 1 bit or a little
more. Bob encrypts his database with the final key K and Alice
obtains the item she wanted with one of her known bits in K.

Protocol P in Ref. [8] can be used simply as a ‘black box’ primitive
to build up a secure PIR protocol. This reason lies in that we  need
not deal with the details of Protocol P in Ref. [8] when it is used
to build up a PIR protocol. Hence the proposed PIR protocol built
upon Protocol P in Ref. [8] is also unconditionally secure against the
cheating attack in the Lo’s proof [6].

2.3. A concrete example: unconditionally secure quantum PIR
protocol based on secure quantum all-or-nothing OT

Protocol Q

(1) Preparation of the states: Alice prepares n sets of four qubits
in an entangled state | 〉  as described in Eq. (1). She keeps

systems A1 and A2 of each | 〉 and sends systems B1 and B2 to
Bob.

| 〉  = | B1 B2 A1 A2 〉
= (|0〉+|0〉+|0〉+|0〉+ + |1〉+|1〉+|0〉+|1〉+
+|0〉×|0〉×|1〉+|0〉+ + |1〉×|1〉×|1〉+|1〉+)/2, ,

(1)

where |0 〉 + and |1 〉 + denote the two  orthogonal states of a
qubit. |r〉× ≡ [|0〉+ + (−1)r |1〉+]/

√
2 (r = 0,1), where +(×) stands

for the rectilinear (diagonal) basis.
(2) Bob inputting c:

(2–1) For each | 〉, Bob views the state of systems B1 and B2
as |r 〉 q|r 〉 q, and he randomly picks c ∈ {0, 1} . If c = 0, he tries
to decode q by projecting the two  qubits into ˚− and �+, and
he sets q = + (q = ×) if the outcome is ˚−(�+). Otherwise, if
c = 1, Bob tries to decode r by projecting the two  qubits into
|0 〉 ×|0 〉 + and |1 〉 ×|1 〉 +, and he sets r = 0 (r = 1) if the outcome
is |0 〉 ×|0 〉 + (|1 〉 ×|1 〉 +). Here the Bell state ˚± ≡ (|0〉+|0〉+ ±
|1〉+|1〉+)/

√
2 and �± ≡ (|0〉+|1〉+ ± |1〉+|0〉+)/

√
2.

(2–2) If the projection in (2–1) fails, Bob tells Alice to discard
the corresponding |  〉 .

(3) Verification 1:
(3–1) If the number of the remaining | 〉 is n′ ≈ n/2, they

continue; otherwise, they abort the procedure.
(3–2) Alice randomly picks some of the remaining | 〉  and

asks Bob to announce either their q or r depending on the value
of c. To check Bob’s announcement, Alice measures  A1 A2
in the basis D0 ≡ {|0 〉 +|0 〉 +, |0 〉 +|1 〉 +, |1 〉 +|0 〉 +, |1 〉 +|1 〉 +} and
uses the result to calculate q, r that corresponds to  B1 B2 .

(3–3) Bob randomly picks some other remaining | 〉  and
asks Alice to announce both q and r. Alice performs the same
measurement in (3–2) to obtain q, r to announce.(3–4) If
{no conflicting results were found by both participants} and
{the probabilities for |r 〉 q|r 〉 q = |0 〉 +|0 〉 +, |r 〉 q|r 〉 q = |1 〉 +|1 〉 +,
|r 〉 q|r 〉 q = |0 〉 ×|0 〉 × and |r 〉 q|r 〉 q = |1 〉 ×|1 〉 × to occur are
approximately the same}, they keep the remaining undis-
carded and unverified | 〉 and continue.

(4) Alice inputting d:
(4–1) For each of the remaining m sets of | 〉, Alice picks

d = 0 with the probability p = 2/3 and d = 1 with the probability
(1 − p) = 1/3. If d = 0, she tries to decode s [defined as Eq. (2) by
projecting  A1 A2 into the subspace supported by {|0 〉 +|0 〉 +,
|1 〉 +|1 〉 +} . Here Bob’s outcome s is defined as

s ≡
{
Q, c = 0,

r, c = 1,
(2)

where Q = 0, 1 for q = +,×.
Otherwise, if d = 1, Alice tries to decode c by projec-

ting  A1 A2 into |1 〉 ×|1 〉 × and |0 〉 ×|0 〉 ×. If the outcome is
|1 〉 ×|1 〉 ×(|0 〉 ×|0 〉 ×), she knows that Bob has chosen c = 0
(c = 1).

(4–2) If the projection in (4–1) fails, Alice tells Bob to discard
the corresponding | 〉.

(5) Verification 2:
(5–1) If the number of the remaining | 〉 is about m/2, they

continue; otherwise, they abort the procedure.
(5–2) Bob randomly picks some of the remaining | 〉  and

asks Alice to announce either c or s depending on the value of d.
Note that if d = 0, Alice needs to complete the measurement on
 A1 A2 in the basis {|0 〉 +|0 〉 +, |1 〉 +|1 〉 +} , and she announces
s = 0 (s = 1) if the outcome is (|0 〉 +|0 〉 +|1 〉 +|1 〉 +).(5–3) If {no
conflicting results were found}  and {d = 0 occurs with the
probability 2/3}, they keep the remaining undiscarded and
unverified | 〉  and continue.
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