
Optik 127 (2016) 4275–4280

Contents lists available at ScienceDirect

Optik

jo ur nal homepage: www.elsev ier .de / i j leo

Vision  pose  estimation  from  planar  dual  circles  in  a  single  image
Huang  Bin ∗, Sun  Yongrong,  Zhu  Yunfeng,  Xiong  Zhi,  Liu  Jianye
Navigation Research Center, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016,
Jiangsu, PR China

a  r  t  i  c  l  e  i n  f  o

Article history:
Received 2 December 2015
Accepted 15 January 2016

Keywords:
Pose estimation
Computer vision
Dual circles

a  b  s  t r  a  c  t

A novel  vision  based  pose  estimation  method  for a  single  image  with  planar  dual  circles  is  addressed.
We  present  a very  simple  formula  to solve  camera  pose  with  a  single  circle,  and  then  develop  a fusion
method  to integrate  solved  poses  of dual  circles  by  using  space  geometry  constraints.  After  that,  a new
definition  of the  difference  quantity  between  two  ellipses  is proposed  to evaluate  reprojection  errors  of
dual circles  and  determine  the  optimal  and  unique  pose  solution.  Experiments  with  synthetic  data  and
real  images  are  carried  out to validate  the  proposed  method,  and  results  show  that  the  method  has  a  high
accuracy  and  good  robustness.
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1. Introduction

Pose estimation of camera from a single image is a basic and
important problem in computer vision literature for the last two
decades [1,2]. The well-known perspective-n-point (PnP) problem,
which was first proposed by Fishler and Bolles, is to find the pose of
an object from the image of n points at known location on it [3,4].
A large number of absolute pose algorithms for PnP problem have
been studied [5,6]. Collins presented a new analytic solution to the
problem which is far faster than current methods based on solving
PnP problem [7]. Zhou proposed the SoftSI algorithm to obtain pose
and correspondences simultaneously, which is based on the com-
bination of the proposed PnP algorithm (the SI algorithm) and two
SVD-based shape description theorems [8]. Line correspondences
were also commonly used to estimate the camera pose, since lines
are very similar with points in perspective transformation [9].

Another kind of patterns in man-made objects and scenes are
circular features, which have been widely applied to camera cal-
ibration, autonomous navigation and industrial detection [10,11].
Under perspective geometry, a projected circle appears as an ellipse
in the imaging plane, and the 3D position of the circle can be
extracted from single image using the inverse projection model
of the calibrated camera [12,13]. Zhao used projected circle cen-
ters to calibrate camera parameters [14], and Lu presented a
mono-circular-vision-based method for localization of underwater
circular features [15].

However, two possible pose solutions can be recovered under
normal circumstances when employing a single circle. External
information should be added to determine the unique pose solu-
tion [16,17]. Such as, three non-concentric circles [18], two  parallel
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circles [19], or two arbitrary coplanar circles [20] were used as cal-
ibration patterns. Ma presented a circle pose estimation method
based on binocular stereo vision [21]. Rahmann proposed a min-
imal and linear solver from two views using two arbitrary circles
[22]. Gurdjos stated the recovering problem of 2D Euclidean struc-
ture from N parallel circles in terms of a system of linear equations
to solve and provided a closed-form solution [23]. Another problem
of the circular vision is the difficulty to evaluate pose estimation
results, since previous methods are based on analytical geometry.

In this paper, we propose a method to determine the exact cam-
era pose using dual circle with different centers in a same plane.
Unlike the existed method using the concept of the absolute conic to
solve the relative pose based on only a single circle, we deduct a very
simple formula to solve the single circle based pose determination
problem. And then we present a fusion method to integrate poses
of dual circles, and define a new difference quantity of two  ellipses
in order to evaluate reprojection errors of circles and determine the
unique and optimal pose estimation solution.

This paper is organized as follows. Section 2 briefly introduces
some notations and basic equations in computer vision. Section
3 derives a very simple formula to solve the pose determination
problem based on a single circle. After the pose for single circle is
known, dual circles based vision pose estimation method is induced
in Section 4. The results of experiments with synthetic data and
real images are shown in Sections 5 and 6. Finally, the conclude is
presented in Section 7.

2. Perspective geometry and circular projection

2.1. Camera projection model

Let x̃ = (x, y, z, 1)T be the 3D homogeneous coordinates of a
world 3D point x ∈ R

3, and m̃ = (u, v, 1)T be the homogeneous
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coordinates of its projection in the image plane. Under perspective
geometry, the projection relationship can be described as:

zcm̃ = KXc = K[R t]x̃ with K =

⎡
⎢⎣

fu 0 u0

0 fv v0

0 0 1

⎤
⎥⎦ (1)

where Xc = (xc, yc, zc)T is the 3D coordinates of x in camera frame.
K is the camera intrinsic matrix, consisted of the principle point
(u0, v0) and the focal length (fu, fv). [R t] is the camera extrin-
sic matrix, where R = [r1 r2 r3] means the rotation matrix, and t
stands for the translation vector from the world frame to the camera
frame.

2.2. Projection of a circle

Without loss of generality, we may  assume the world space is
restricted to its x–y plane, which means z = 0. Then a point x = (x, y,
0)T on a circle C satisfies the following equation:

x̃T
pPx̃p = 0 with P =

⎡
⎢⎣

1 0 −x0

0 1 −y0

−x0 −y0 x2
0 + y2

0 − r2

⎤
⎥⎦ (2)

where x̃p = (x, y, 1)T , (x0, y0) is the center of C, and r is the radius
of C.

Substituting z = 0 into Eq. (1), then we can get

x̃p = zcH−1m̃ with H = K[r1 r2 t] (3)

With Eqs. (2) and (3), the projected ellipse E of the circle C can be
expressed as

m̃T Qm̃ = 0 with Q = �H−T PH−1 (4)

where � is a non-zero factor.

3. Vision pose solver with single circle

If the camera is assumed calibrated, we may  set K = I3 = diag(1,
1, 1), which is equivalent to normalizing the image coordinates by
applying transformation K−1. Then

H = [r1 r2 t] = R[e1 e2 RT t] and H−1 = [e1 e2 s]RT (5)

where e1 = (1, 0, 0)T, e2 = (0, 1, 0)T, and s = (s1, s2, s3)T satisfies

RT t =
(

− s1

s3
, − s2

s3
,

1
s3

)T

or t = − 1
s3

R · (s1, s2, −1)T (6)

Since −RTt represents the optic center position coordinate in the
world frame, we have s3 < 0 when the z-axis of the world frame is
set pointed to the camera.

If we set the center of the circle as the world frame’s origin
point, then P in Eq. (2) can be written as P = diag(1, 1, −r2), and
Q is obtained from Eqs. (4) and (5) as

Q = �RMRT with M =

⎡
⎢⎣

1 0 s1

0 1 s2

s1 s2 s2
1 + s2

2 − s2
3r2

⎤
⎥⎦ (7)

Diagonalizing M as M = U · diag(�1, �2, �3) · UT, we  have

�1 = 1, �2 + �3 = 1 + s2
1 + s2

2 − s2
3r2, �2�3 = −s2

3r2 (8)

UT =⎡
⎢⎢⎢⎢⎢⎣

− s2√
s2

1 + s2
2

s1√
s2

1 + s2
2

0

s1√
s2

1 + s2
2 + (�2 − 1)2

s2√
s2

1 + s2
2 + (�2 − 1)2

�2 − 1√
s2

1 + s2
2 + (�2 − 1)2

s1√
s2

1 + s2
2 + (�3 − 1)2

s2√
s2

1 + s2
2 + (�3 − 1)2

�3 − 1√
s2

1 + s2
2 + (�3 − 1)2

⎤
⎥⎥⎥⎥⎥⎦
(9)

and det(U) = 1. It is obvious that one of (�2, �3) is positive and
another is negative from Eq. (8). Let us assume �2 > 0 > �3, and then
the order of (�1, �2, �3) is determined by using (1 − �2)(1 − �3) =
−(s2

1 + s2
2) ≤ 0 as

�2 ≥ �1 = 1 > 0 > �3 (10)

We can also diagonalize Q as Q = V · diag(�1, �2, �3) · VT, and
assure det(V) = 1, and the order of (�1, �2, �3) as �2 ≥ �1 ≥ �3
if �1�2�3 > 0, or �2 ≤ �1 ≤ �3 if �1�2�3 < 0. Further, we  can
establish the relationship between M and Q through Eq. (7)
as

(�1, �2, �3)T = �(�1, �2, �3)T and �2 = �2

�1
, �3 = �3

�1
(11)

diag(�1, �2, �3) = (VT RU) · diag(�1, �2, �3) · (VT RU)
T

(12)

Hence, W = VTRU with det(W) = 1 is made up of eigenvectors of non-
singular diagonal matrix. And we  can determine all the possible
forms of W as follows

W1 = diag(1,  1, 1) W2 = diag(1,  −1, −1)

W3 = diag(−1, 1, −1) W4 = diag(−1, −1, 1)
(13)

Thus, the rotation matrix R can be solved as R = VWUT, and we
can obtain the position vector b of the center of circle C and the
norm vector n of circle plane in the camera frame from Eqs. (8)–(13)
as

b = t = − 1
s3

R · (s1, s2, −1)T = − 1
s3

VWk(UT · (s1, s2, −1)T )

= r

√
�2

1
�2�3

[v1 v2 v3]Wk

·
[

0 −�3

�1

√
�2 − �1

�2 − �3

�2

�1

√
�3 − �1

�3 − �2

]T

= r

(
±
√

−�3(�2 − �1)
�2(�2 − �3)

v2 ±
√

−�2(�3 − �1)
�3(�3 − �2)

v3

)
(14)

n = r3 = Re3 = VWk(UT e3)

= VWk ·
[

0

√
�2 − �1

�2 − �3

√
�3 − �1

�3 − �2

]T

= ±
√

�2 − �1

�2 − �3
v2 ±

√
�3 − �1

�3 − �2
v3 (15)

where k = 1, 2, 3, 4, e3 = (0, 0, 1)T, and V = [v1 v2 v3] is made up of
eigenvectors of Q. Two  solutions can be excluded when considering
eT

3b > 0 in the actual situation.
In conclusion, we can easily achieve at most two  solutions of b

and n through diagonalizing Q and applying Eqs. (14) and (15).
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