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a  b  s  t  r  a  c  t

Fractional  Fourier  Transform  (FRFT)  is  regarded  as an  effective  method  for detection  of  Linear  Frequency
Modulation  (LFM)  signals  in recent  years.  However,  the performance  of  FRFT  detection  will deteriorate
sharply  in  the  weak  noise  scene.  An  alternative  solution  is  the  use of bistable  system,  which  can  generate
stochastic  resonance  (SR), and  is  relatively  easy  to achieve.  This  paper  proposes  a  novel  LFM weak  signal
detection  algorithm  based  on  bistable  system  and  FRFT,  named  BSFRFT.  We  use  the  SR  effect  of bistable
system  to  amplify  LFM  signal,  and  then  apply  FRFT  to  the  previous  output.  We  also  present  an  evaluation
criteria  to  measure  the  ability  of detection  methods  and  to compare  performance  of  FRFT  and  BSFRFT.
Numerical  simulations  show  that the  algorithm  is effective  for  two  cases  – the  LFM  signal  covered  by
white  noise  or colored  noise  (including  pink  noise).

© 2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Linear Frequency Modulation signal (LFM signal), which is
always implemented as linear chirp signal, is widely used in sonar
and radar systems. It could get larger compression ratio as well
as having excellent range resolution and radial velocity resolution
ration [1].

The typical LFM signal can be written as

S(t) = A0 cos(2��t2 + 2�f0t), (1)

where A0 is the signal amplitude, � the rate of frequency increase
or chirp rate, and f0 the starting frequency.

There are many methods to estimate LFM signal due to their
time-varing characteristic, such as short-time Fourier transform
(STFT) [2], Wigner–Ville distribution (WVD) [3], Radon–Wigner
transform (RWT) [4], Wigner–Hough transform (WHT) [5] and so
on. However, the above approaches have some disadvantages. The
STFT cannot achieve a satisfied time-frequency resolution due to
the window function. The WVD  suffers from the effect of cross-
terms. Although some techniques have been proposed to suppress
the cross-terms, its time–frequency resolution is then reduced and
the computational complexity increased [6]. The RWT  and WHT  are
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both two-dimensional search algorithms, whose searching time is
large and cross-terms interferences also exist [1].

Fractional Fourier Transform (FRFT) is a generalization of the
conventional Fourier Transform. The LFM signal has the best char-
acteristics of energy concentration in certain specific fractional
Fourier domain [1], then FRFT provides a higher time–frequency
resolution than STFT and it avoids the effect of cross-terms pro-
duced by the WVD  [6]. Due to its orthonormal chirped basis, the
LFM signal fits well in the FRFT domain for detection and estimation
[6]. However, through the theoretical analysis of FRFT detection
performance, it is noted that although FRFT is a linear transfor-
mation, the output SNR relative to the input SNR has a threshold
effect – when the input SNR is higher than the threshold, the
output SNR is improved and when the input SNR is below the
threshold, the output SNR is worsened [10]. In other words, when
input SNR is not large enough, the FRFT detection result is not
satisfactory.

Stochastic resonance (SR) is a phenomenon wherein the
response of a nonlinear system to a weak periodic or aperiodic input
signal is optimized by the presence of a particular level of noise
[8], and broadly adopted to describe any phenomenon where the
presence of noise in a nonlinear system is better for output signal
quality than its absence [7]. Bistable system is a simple model used
to generate SR and has received much research attention. It has two
stable equilibrium states and can transition from one state to the
other if it is given enough activation energy to penetrate the barrier.
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Then SR effect of bistable system has simple physical explanation,
that is, with the help of random forces, a particle makes occasional
transitions from an equilibrium state over the barrier in the center
and as the input noise variance is increased, the rate at which such
jumps will occur increases, but once noise variance is large enough
that the barrier becomes easy to surmount, the rate grows more
slowly as the noise is further increased [9].

In this paper, we will use bistable system to amplify the input
LFM signal covered by noise with the SR effect and then apply FRFT
to detecting the output of bistable system.

2. LFM signal detection based on FRFT

2.1. Basis of FRFT

The FRFT of signal x(t) is represented as

Xp(u) = Fp[x(t)] =
∫ ∞

−∞
x(t)K˛(t, u)dt, (2)

where p is the fractional order,  ̨ = p�
2 , Fp[·] denotes the FRFT oper-

ator, and K˛(t, u) is the kernel of the FRFT:

K˛(t, u) = A˛ exp(j�(u2 cot  ̨ − 2utcsc  ̨ + t2 cot ˛)) (3)

with A˛ =
√

1 − j cot ˛. K˛(t, u) has the following properties:

K−˛(t, u) = K∗
˛(t, u), (4)∫ ∞

−∞
K˛(t, u)K∗

˛(t, u′) = ı(u − u′). (5)

Hence, the inverse FRFT is

x(t) = F−p[Xp(u)] =
∫ ∞

−∞
Xp(u)K−˛(t, u)du. (6)

Eq. (6) indicates that signal x(t) can be interpreted as a decompo-
sition to a basis formed by the orthonormal LFM functions in the
u domain, and the u domain is usually called the fractional Fourier
domain, in which the time and frequency domains are its special
cases [11].

2.2. Discrete FRFT algorithm

Ozaktas gave an effective DFRFT algorithm [12]:

Xp(u)  = A˛

2F

N∑
n=−N

exp(j�u2 cot  ˛)  exp

(
j�n2 cot  ˛

(2F)2
− j2�uncsc˛

2F

)
s

(
n

2F

)
,

(7)

where p, ˛, A˛ are defined as in Section 2.1, F is the highest frequency
of signal s(t), n is the sampling point for t, N = F2, and s(t) is assumed
to be zero outside

[
− F

2 , F
2

]
.

Go on to discrete u, we get that:

Xp

(
m

2F

)
= A˛

2F

N∑
n=−N

exp

(
j�m2 cot ˛

(2F)2
+ j�n2 cot ˛

(2F)2
− j2�mncsc˛

(2F)2

)
s

(
n

2F

)
,

(8)

where m is the sampling point for u.
After some algebraic manipulations, we can rewrite (8) as the

following form:

Fig. 1. LFM signal.

Fig. 2. Gaussian white noise.
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It can be recognized that the summation is the convolution of

exp
(

j�csc˛
(

n
2F

)2
)

and the chirp-modulated function s(·). The

Fig. 3. LFM signal plus Gaussian white noise.
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