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a  b  s  t  r  a  c  t

The  higher-order  nonclassical  squeezing  and  quantum  entanglement  effects  emerging  from  the  sec-
ond  harmonic  generation  of  the  associated  two-mode  and two-photon  Hamiltonian  are  investigated
in  the  dispersive  limit.  The  squeezed  states  of the field,  including  the  normal  and  amplitude  squared
(higher-order)  squeezing  factors  are  generated  in  two  ways,  i.e., from  the  bosonic  operators  via  ampli-
tude powered  quadrature  variables,  and  through  the SU(2)  characterization  of  a passive  and  lossless
device  with  two  input  and  two output  ports,  which  then  allows  one  to visualize  the  operations  of  beam
splitters  and  phase  shifters  as  rotations  of  angular  momentum  operators  in  3-space.  Two  criteria  for  inter-
modal  higher-order  quantum  entanglement  and  different  coherent  states  for  the  two  modes  in  the  initial
state  are  used  to compute  these  nonclassical  effects.  The  unitary  time  evolution  of the  linear  entropy,
computed  from  the partial  trace  of the density  matrix over  the  secondary  mode,  is  also  used  as a  criterion
of quantum  entanglement.  These  approaches  show,  in  fact, that  the  present  model  exhibits  a  consider-
able  amount  of this  nonclassical  effect.  The  unitary  time  evolution  of  the linear  entropy  shows  that  the
present  nonlinear  optical  model  does  not  preserve  the  modulus  of the  Bloch  vector.

© 2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Second harmonic generation (SHG) is a nonlinear optical pro-
cess, in which photons with the same frequency interacting with a
nonlinear material are effectively “combined” to generate new pho-
tons with twice the energy, and therefore twice the frequency and
half the wavelength of the initial photons. In biological and med-
ical science, the effect of SHG is used for high-resolution optical
microscopy. Because of the non-zero second harmonic coefficient,
only non-centrosymmetric structures are capable of emitting SHG
light. One such structure is collagen, which is found in most
load-bearing tissues. SHG microscopy has been used for exten-
sive studies of the cornea [1] and lamina cribrosa sclerae [2], both
of which consist primarily of collagen. SHG is also used by the
laser industry to make green 532 nm lasers from a 1064 nm source
and for measuring ultra short pulse width by means of intensity
auto-correlation. Generating the second harmonic, often called fre-
quency doubling, is also a process in radio communication; it was
developed in the 20th century, and has been used with frequencies
in the megahertz range.
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Generally speaking, these two-photon states can be useful for
solving various fundamental physical and technological problems.
For example, one can use the two-photon states in order to improve
optical communications by reducing the quantum fluctuations in
one (signal) quadrature component of the field at the expense of
the amplified fluctuations in another (unobservable) component.
These interesting properties and applications in various fields of
applied and basic theoretical research of the SHG, motivated us to
explore the so far uninvestigated potential existence of nonclassi-
cal squeezing and intermodal higher-order quantum entanglement
effects in the associated electromagnetic field. In this context it is
worth noting that several new applications of these nonclassical
states have been reported in recent past [3–7]. As a consequence
of these recently reported applications, generation of nonclassical
states in various quantum systems emerged as one of the most
important areas of interest in quantum information theory and
quantum optics [8,9]. Several systems are already investigated and
have been shown to produce entanglement and other nonclassical
states [10,11].

A state having negative or highly singular (more singular than
ı function) Glauber–Sudarshan P function is referred to as a
nonclassical state as it cannot be expressed as a classical mix-
ture of coherent states [3]. P function provides us an essential
as well as sufficient criterion for detection of nonclassicality.
However, P function is not directly experimentally measurable.
Consequently, several operational criteria for nonclassicality have
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been proposed in the past. A large number of these criteria are
expressed as inequalities involving expectation values of func-
tions of annihilation and creation operators. As mentioned above
we are interested in the higher-order nonclassical properties of
radiation fields. In quantum optics and quantum information
higher-order nonclassical properties of bosons (e.g., higher-order
Hong-Mandel squeezing, higher-order antibunching, higher-order
sub-Poissonian statistics, higher-order entanglement, etc.) are
often studied [12]. Until recently, past studies on higher-order
nonclassicalities were predominantly restricted to theoretical
investigations. However, a bunch of exciting experimental demon-
strations of higher-order nonclassicalities have been recently
reported [13–15].

Higher-order squeezing is usually studied using two different
approaches. In the first approach introduced by Hillery [16] reduc-
tion of variance of an amplitude powered quadrature variable
for a quantum state with respect to its coherent state counter-
part reflects nonclassicality. In contrast, in the second type of
higher-order squeezing introduced by Hong and Mandel [17,18],
higher-order squeezing is reflected through the reduction of
higher-order moments of usual quadrature operators with respect
to their coherent state counterparts.

The present contribution aims to study higher-order nonclassi-
cal properties emerging from the SHG Hamiltonian with specific
attention to higher-order squeezing and higher-order quantum
entanglement.

The remaining part of the paper is organized as follows. Sec-
tion 2 introduces the theoretical background associated with the
SHG Hamiltonian together with the two approaches of squeezing
based on the variances of the quadrature modes. We  also introduce
a scattering matrix, proper of the SU(2) group, which will in general
transform the angular momentum operators among themselves.
Since SU(2) is equivalent to the rotation group in three dimen-
sions, introduction of the Schwinger representation of the angular
momentum operators through an homomorphism with the unitary
group, will allow one to visualize the operations of beam splitter
and phase shifters as rotations in 3-space. This section ends with
the description of the conditions for the intermodal higher-order
quantum entanglement. In Section 3 we use the criteria described
in the previous section to numerically illustrate the nonclassical
character of the radiation field of this nonlinear optical process
using different initial coherent states. This is a novel feature of
the present approach, since coherent states can be considered as
squeezed states. It will be shown that the variances of different
canonically conjugated variables can even assume (small) values
which are less than the ground state variances. It will be also shown
that there exists the possibility of a weak intermodal higher-order
quantum entanglement of this specific two-mode optical process.
This is reflected, in particular, in the unitary evolution of the lin-
ear entropy which shows that the present nonlinear optical process
does not preserve the modulus of the Bloch vector. The paper ends
up with conclusions in Section 4.

2. Theoretical background

2.1. Second harmonic generation Hamiltonian and initial
conditions

With the widespread use of large-amplitude beams from pow-
erful lasers, it is necessary to assume that the relationship between
the polarization and the electric field is nonlinear. In fact, the
second-order term of the expansion of the polarization in powers
of the electric field shows that the resultant second-order nonlin-
ear response generates an oscillating polarization at the sum and
difference frequencies of the input fields. If the two frequencies are

equal, the sum frequency is at twice the input frequency, and the
effect is called frequency doubling or second harmonic generation.
This nonlinear process is governed by the Hamiltonian

H = H0 + Hint = ωaa
†a + ωbb

†b + g(a2b† + a†2b), (1)

where a(a†) and b(b†) are the annihilation (creation) operators of
the fundamental mode of frequency ωa and of the second hermonic
mode of frequency ωb, respectively, satisfying standard commuta-
tion relations for the Lie algebra of SU(2). When perfect matching
conditions are satisfied, we have the relation ωa = 2ωb. The constant
g describes phenomenologically the coupling between the modes.
It can always be chosen as real.

The nonlinear Hamiltonian (1) can be diagonalized through the
method of small rotations pioneered by Klimov et al. [19,20] and
we briefly describe it. After noting that it admits the constant of
motion [19]

R = a†a + 2b†b, (2)

then the Hamiltonian can be rewritten in the following form

H0 = ωa + ωb
3

R

Hint = �

3
(b†b − a†a) + g(a2b† + a†2b),

(3)

where � = ωb − 2ωa is the detuning.
Since H0 determines the total energy stored in both modes,

which is conserved, [H0, Hint ] = 0, we can factor out exp(−iH0t)
from the evolution operator and drop it altogether.

In the present work we  are interested in the dispersive limit of
this model, when

|�|  � g(n̄1 + 1) (n̄2 + 1),  (4)

where n̄1 and n̄2 denote the average photon numbers in the first and
second harmonic modes a and b, respectively. Then, using the Lie
transformation method [19–21], and applying a unitary transfor-
mation to the interaction Hamiltonian (1), an effective Hamiltonian
is obtained as

Heff = THint T†, (5)

where

T = exp[�(a2b† − a†2b)], (6)

with � = g/� � 1. By expanding Eq. (5) in a power series and keeping
terms up to the order (g/�)2, yields

Heff = �

3
(b†b − a†a) + g2

�
[4b†ba†a − (a†a)

2
]. (7)

The effective Hamiltonian Eq. (7) describes the dispersive evolu-
tion of the fields, but the essential point is that it is diagonal, which
implies that there is no population transfer between the modes (as
expected in the far resonant limit). The first term in Eq. (7) does
not affect the dynamics and just leads to rapid oscillations of the
wave function. The dynamics of the present model is not station-
ary and depends on the initial conditions of the model. Thus, it is
assumed that, initially, the field modes are in generalized Glauber
boson coherent states |z1 z2> [22] and in a disentangled state with
density operator

�(0) = �a(0) ⊗ �b(0) = | (0) ><  (0)|, (8)

where �a(0) and �b(0) are density operators at t = 0 of the field
modes, and

| (0) >=
∞∑

m1=0

∞∑
m2=0

Cm1m2 (0)|m1 > ⊗|m2 >,  (9)
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