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a  b  s  t  r  a  c  t

Talbot  phenomenon  of the finiteness  grating  is  studied  both  theoretically  and  experimentally.  The  sim-
ulations  can  be  performed  in any  PC using  a MATLAB  program  developed  by  the author.  The diffractions
of  finiteness  periodic  square  aperture  arrays  in  Fresnel  fields  are  analyzed  according  to  the scalar  diffrac-
tion  theory.  The  additional  intensity  maxima  in  Talbot  images  of  the  finiteness  gratings  are  theoretically
predicted  to  appear.  The  square  aperture  arrays  are  produced  and  the  self-images  of  the  gratings  are
measured  successfully  in  the  experiment.  A  comparative  analysis  of  theoretical  results  with  experimental
ones  is illustrated.

© 2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The diffraction phenomenon is of the utmost importance in
the theory of optical systems [1–4]. Most of the problems are
not amenable to an exact solution in diffraction optics because
of its complexity. Therefore, numerical methods facilitate the
viable alternatives to investigate relatively simpler cases. Two
types of diffraction are distinguished, depending upon the dis-
tance between the source and the screen: Fraunhofer diffraction
or far-field diffraction at large distances and Fresnel diffraction
or near-field diffraction at close distances [5]. Due to the finite
distance between the initial plane and the observation plane,
the optical wavefronts are not planar, in the Fresnel zone. The
diffraction integral becomes more complex to find plausible solu-
tions compared to those in Fraunhofer diffraction [4–6]. For
Fresnel diffraction from single apertures (rectangular or circular)
two-dimensional (2D) diffraction integral [5] can sometimes be
separated into two separate functions in Cartesian or polar coor-
dinates [7]. For example, the solution of Fresnel diffraction from
rectangular aperture is usually derived in terms of certain non-
analytic integrals known as Fresnel integrals, involving arguments
in the Cartesian coordinates.

Talbot phenomenon is a recurrent self-imaging phenomenon
in the near-field diffraction of plane waves from a grating [8–10],
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and the Talbot distance depends on the parameters of the grating
(zT = 2D2/�, where D is grating period and � is the probe wave-
length). In the past decade Talbot phenomenon has attracted a lot
of attention, owing to its potential applications in image prepro-
cessing and synthesis [11,12], photolithography [13], spectrometry
[14], optical sensing [15,16], and elsewhere. New computers and
powerful software has permitted the numerical computation of Tal-
bot images [17,18], using 2D fast Fourier transform (FFT). While
2D FFT methods are very versatile and powerful, using them
relegates the entire computation process to the computer, and pro-
vides little insight into the computation process itself. No existing
symmetry property of the aperture is used to simplify the calcu-
lation process, nor any attempt is made to effect a separation of
the diffraction integral into functions involving one-dimensional
(1D) variables. Moreover, it is difficult to predict how the com-
plex and intricate diffraction image will change with a change of
experimental parameters (distance, period of the grating or its
aperture). For these reasons, present paper shows the results of
simulation of Talbot image of finiteness grating, using the Fresnel
integrals approach instead of the more common FFT-based meth-
ods. Using the method, one can simulate the Fresnel diffraction
pattern from a gating of any period in any experimental con-
figuration by using a common PC and the well-known software
MATLAB.

The layout of the paper is as follows: Section 2 shows the
detailed underlying theory of the iterative Fresnel algorithm,
details of simulation algorithm and results are described in Sec-
tion 3, experimental results are shown in Section 4, finally some
concluding remarks are made in Section 5.
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2. Theory

Light diffraction by a single aperture is discussed and analyzed
in many textbooks [4–6]. Fig. 1 shows the basis of calculation of
Fresnel diffraction from a single aperture.

Square aperture of dimensions a × a is illuminated with plane
light beam of wavelength �, and the diffracted light is observed on
the screen located on a distance z. For convenience, the coordinate
systems on the aperture and on the image planes are chosen to
be centered on the optical axis passing through the center of the
aperture and normal to it, and are denoted by (�, �) and (x, y) axes,
respectively. The Huygens–Fresnel principle is then invoked to cal-
culate the total electric field at any given point of the image plane
(x, y) by summing up the contributions of all the elementary waves
emitted by different areas inside the aperture, taking into account
both amplitude and phase in the process.

In free-space light propagation at a distance z from the aperture
the field amplitude becomes [4]:

U(x, y; z) = −jU0ej 2�z
� E(x)E(y), (1)

where U0 is the amplitude of the incoming wave, and E(x) and E(y)
are the Fresnel exponential integrals:
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The irradiance at observation plane is given by the square of abso-
lute value [4]:
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E(x)Ē(x)

)  (
E(y)Ē(y)
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Here I0 is the unobstructed intensity corresponding to U0 (I0 =∣∣U0

∣∣2
).

Let us consider the case of a N × N apertures, with a filling fac-
tor f = a/D where D is the period of the structure. The structure is
centered on the (�, �) system, i.e. the origin the coordinate system
is located at the exact center of the structure. The total amplitude
distribution of electric field over the structure is given by:
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Fig. 1. Basic configuration of Fresnel diffraction from a single square aperture [5].

where 1(w) is the rectangular function [19]:
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The total amplitude distribution of electric field at a distance z
from the grating becomes:

U(x, y; z) = −jU0ej 2�z
�
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where an and am are the single aperture shifts:
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For further consideration it is convenient to express (6) in terms of
Fresnel exponential integral (2):
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As one can see from Eqs. (6) and (8) in the case of a = D a single
aperture of width ND is realized.

It is apparent that the computation of amplitude distribution
(8) or intensity distribution (3) requires the evaluation of 2 Fresnel
exponential integrals, which correspond to the 4 edges of the single
aperture system, and the evaluation of 2N shifts (7), corresponding
to the N × N apertures system. One should note, that MATLAB uses
the cosine and sine Fresnel integrals, which form the real parts
(cosine) and the imaginary parts (sine) of the amplitude. Euler’s
formula exp(jϕ) = cos(ϕ) + j sin(ϕ) is used to calculate the complex
amplitude distribution both single aperture (1) and N × N apertures
system (8).

The calculation of the intensity distribution (8) may be done
using Fresnel cosine and sine integrals for arbitrary argument value.
MATLAB 6.5 has no built-in functions available to calculate the Fres-
nel integrals, but Fresnel cosine and sine integrals can be invoked
by typing mfun(‘FresnelS’, phase) and mfun(‘FresnelS’,
phase), using Symbolic Math Toolbox of MATLAB. These functions
return single values of Fresnel integrals if phase is a single valued
variable. To generate Fresnel integrals from Sphase to Ephase with
a step of step one should type u=mfun(‘FresnelC’, Sphase:
step: Ephase) for cosine and u=mfun(‘FresnelS’, Sphase:
step: Ephase) for sine, which were used in simulations. The
complete MATLAB program is given in Appendix A. The initial
parameters of the program are the length of the transparent part a
(in mm),  the period of the structure D (in mm),  the aperture-image
plane distance z (in mm),  the step size or resolution s (in mm),  the
wavelength l (in nm), the image area b (in mm) and the number of
apertures N.

3. Simulation results

Using the program, depicted in Appendix A, the values of the
required inputs (aperture parameters, step size, the aperture-image
plane distance, the light wavelength, the image area and the num-
ber of apertures) are input via a graphic user interface into the
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