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a  b  s  t  r  a  c  t

Nonlinear  propagation  of  Gaussian  laser  beam  in  an  inhomogeneous  plasma  under  plasma
density  ramp  is  studied.  The  differential  equation  for  beam  width  parameter  is derived  by
parabolic  wave  equation  approach  under  paraxial  approximation.  For  different  values  of
plasma  density,  laser  intensity  and  initial  beam  width,  the  behavior  of  beam  width  param-
eter  with  the  normalized  propagation  distance  is examined.  It is found  that the  beam  width
parameter  decreases  with  a higher  rate. The  frequency  of  the  oscillations  increases  while
amplitude  decreases  and  the laser  beam  focuses  up  to  long  distance.  Further,  increase  in
relative plasma  density  causes  reduction  in  the  amplitude  of spot  size of  laser  beam  near
the propagation  axis.

©  2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The theoretical and experimental study of interaction of high intensity laser beams with plasmas is a fascinating field
of research which gives rise to various important applications such as plasma based accelerators [1], inertial confinement
fusion [2,3], ionospheric modification [4,5] etc. For the success of these applications, the laser beam propagates over distances
greater than several Rayleigh lengths [6–8]. Self-focusing is a nonlinear phenomenon which is induced due to change in the
refractive of the medium. It can be relativistic [9] as well as ponderomotive [10]. The former is due to relativistic mass
variation of electrons and the later is due to plasma density variations produced by ponderomotive forces. The phenomenon
of self-focusing has been studied by many authors [11–16] and found that the laser and plasma parameters are important
for the self-focusing of laser beam in plasma. Gupta et al. [17] found that the ion temperature causes thermal self-focusing
and has a serious influence on the evolution of laser beam in plasma. However, optimum self-focusing is achieved by taking
in to account the combined effect of ponderomotive and relativistic self-focusing [18].

Jafari Milani et al. [19] investigated the ponderomotive self-focusing of Gaussian laser beam and reported that the collision
frequency at first causes self-focusing and then defocusing of laser beam takes place in warm collisional plasma. But, as
collision frequency is increased, the self-focusing length becomes shorter with the result, larger collision frequency prevents
the longer propagation of laser beam through plasma. The higher order axial electron temperature decreases the influence
of collisional nonlinearity. It changes the electron density distribution and increases the dielectric constant therefore, leads
to fast divergence of the laser beam [20]. However, following higher order paraxial theory with ramped density profile
enhances the focusing of laser beam in plasma [21]. Again, Patil et al. [22] have found that the upward plasma density ramp
tends to enhance the self-focusing significantly and the beam gets more focused while traversing several Rayleigh lengths as
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compared with uniform density relativistic plasma. Kant and Wani [23] reported that the decentered parameter and linear
absorption change the nature of self-focusing/defocusing of laser beam. The absorption weakens the self-focusing effect and
the density transition sets an earlier self-focusing of laser beam in plasma.

In this paper, our purpose is to analyze the impact of upward plasma density ramp on nonlinear propagation of Gaussian
laser beam in an inhomogeneous plasma. The plasma density ramp profile chosen is of the form n(�) = n0 tan(�/d). The
non-linear dielectric constant of plasma is presented in ponderomotive regime. The equations governing the spot size of the
laser beam are derived. The computational results in the context of plasma density, laser intensity and initial beam width
are discussed and finally a brief conclusion is added. The importance of the present work lies in the fact that the upward
plasma density ramp enhances the self-focusing to a greater extent in inhomogeneous plasma.

2. Nonlinear dielectric constant

The nonlinear dielectric function ε for an isotropic inhomogeneous medium can be expressed as

ε = εr(z, EE∗) − iεi(z, EE∗), (1)

where, εr and εi are the functions of z and the irradiance EE∗. Further, εr can be expressed as:

εr(z, EE∗) = ε0(z) + εs�(z)
ε2EE∗

1 + ε2EE∗ , (2)

where, ε0 and � are functions of z. The function �(z) is identified with the plasma frequency. In this case ε0(z) =
1 −
(

ω2
p0/ω2

)
�(z), εs = ω2

p0/ω2, εi(z) = �(z)εi(0) with, �(z) = ω2
p/ω2

p0 = tan(�/d), ω2
p = ω2

p0 tan(�/d) and ω2
p0 = 4�n0e2/m.

Where, ωp0 is the plasma frequency, ω is the angular frequency of incident laser beam, εi is the characteristic of absorption
in the medium, �(z) is characteristic of the density of dipoles, m,  e and n0 are the electron’s rest mass, charge on the electron
and equilibrium electron density respectively, � is the normalized propagation distance and d is a dimensionless parameter.
In case of Gaussian beam εr(z) can be expanded in the paraxial approximation as:

εr(z) = εr0(z) − r2εr2 (z). (3)

3. Self-focusing

Consider the Gaussian laser beam propagating along the z-direction with electric vector �E satisfies the scalar wave
equation of the form

∂2
E

∂z2
+
{

∂2

∂r2
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r

∂
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}
E + ω2

c2
ε(r, z)E = 0, (4)

where, c is the speed of light in vacuum. Eq. (4) can be solved in the paraxial approximation by following the analysis of
Akhmanov et al. [24] and its extension by Sodha et al. [25,26]. The solution of Eq. (4) is of the form

E(r, z) = A(r, z) exp

⎡
⎣−

z∫
0

ik(z)dz

⎤
⎦ , (5)

where, A(r, z) is the slowly varying envelope of the beam and k is the propagation constant of the wave which is given by
k2 = (ω2/c2)εr0(z). Substituting for E(r, z) from Eq. (5) in Eq. (4) and neglecting (∂2

A/∂z2). Under WKB  approximation, one
obtains
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To solve Eq. (6) in the paraxial approximation, the complex amplitude A(r, z) = A0(r, z) exp[−ik(z)S(r, z)] is considered.
Here, A0 and S are real functions of r and z and the eikonal S(r, z) = (r2/2)ˇ(z) + �(z), where, ˇ(z) = (1/f (z))(∂f/∂z) represents
the curvature of the wavefront. Real and imaginary parts of Eq. (6) are obtained as:
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The solution of Eq. (8) can be written as

A2
0(r, z) =
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, (9)
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