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a  b  s  t  r  a  c  t

The  Laplace’s  equation  in  a fractional  dimensional  space  describes  the  electrostatic  potential  inside frac-
tal media  in  the  framework  of fractal  continuum  models.  An exact  solution  of the  Laplace’s  equation  for
cylindrical  coordinate  system  in  a  space  having  fractional  (non-integer)  dimensions  is  derived  and  dis-
cussed.  The  discussion  is  divided  into  different  cases.  These  cases  are  based  on  the  values  of  parameters
describing  the  order  of  fractional  dimensional  space  and  the  parameter  used  to describe  azimuthal  and/or
radial dependency  of the  potential.  A  coaxial  cable  with  constant  potential  and  filled  with a  fractional
dimensional  space  is also  solved  as an example.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The concept of fractional dimensional space is effectively used
in many areas of physics to describe the effective parameters
of physical systems [1–3]. This approach suggests to replace the
real confining structure with an effective space, where the mea-
surement of its confinement is given by non-integer dimension.
There has been an increasing interest to study electrodynamics
based on continuum models of fractal distribution of charges,
currents and fields by solving various electromagnetic equations
in the framework of fractional dimensional spaces [4–9]. The
fractional (non-integer) dimensional solutions of some electromag-
netic equations have been provided by Muslih et al. [10–12], by Hira
et al. [13–21], and by Balankin et al. [22].

In electromagnetics, situations when operating frequency
becomes zero is known as electrostatics whereas quasi-statics
assumes that size of the object is very small compared to
wavelength of the operating frequency. The problems related
to electrostatics and quasi-statics are usually treated using the
Laplace’s equation, i.e., ∇2� = 0. In three dimensional space, the
expression for Laplacian operator for cylindrical coordinate system
is

∇2 = ∂2
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The solutions of the Laplace’s equation are available in all
undergrade text books on electromagnetics. The form of solutions
for the scalar potential depends on the coordinate system being
used. Using method of separation of variables, the solution of the
Laplace’s equation in cylindrical coordinates (�, �) is given below
[23]

�m(�, �) = �m(Am cos m� + Bm sin m�)

+ �−m(A′
m cos m� + B′

m sin m�), m = 1, 2. . . (2)

where m in above expression can be integer or non-integer. For
m = 0 and azimuthal invariance, the potential is given below

�(�, �) = �(�) = C1 + C2 ln � (3)

For m = 0 and radial invariance, the potential becomes

�(�, �) = �(�) = C1 + C2� (4)

This solution may  be divided into sub-categories based on value
of m.  For example: both infinite circular cylinder and infinite wedge
are analyzed in cylindrical coordinate system but potential in the
case of circular cylinder is azimuthally periodic whereas potential
in case of wedge is azimuthally bounded. The boundedness in case
of wedge and periodicity in case of cylinder is managed by taking
value of m as non-integer and integer, respectively.

For fractional space, the Laplacian operator in Cartesian coordi-
nate system is given below [19]
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where D = ˛1 + ˛2 + ˛3. ˛1, ˛2 and ˛3 can be non-integer. It may
be noted that ˛1 = ˛2 = ˛3 = 1 means classical situation. Whereas in
cylindrical coordinates, corresponding expression for operator ∇2

D
is [19]

∇2
D = ∂2

∂�2
+ 1

�
(˛1 + ˛2 − 1)

∂
∂�

+ 1
�2

(
∂2

∂�2
− {(˛1 − 1) tan � − (˛2 − 1) cot �} ∂

∂�

)

+ ∂2

∂z2
+ ˛3 − 1

z

∂
∂z

(6)

Using method of separation of variables, solutions of the scalar
Helmholtz’s equation in non-integer dimensional space for carte-
sian, cylindrical and spherical coordinate systems were derived
by Zubair et al. [15–18]. It was shown that, in cartesian coordi-
nate system, special function models the propagation of wave in
direction which has non-integer dimension. Their treatment also
shows that, for general solution in cylindrical coordinates, hyper-
geometric functions model the azimuthal dependency whereas
radial dependency is model through Bessel and Hankel functions.
In order to treat the static and quasi-static problems, solution of
the Laplace’s equation is required. This is because solution of the
Helmholtz’s equation cannot easily be reduced to corresponding
solution derived through Laplace’s equation by the limiting pro-
cedure. It may  also be noted that the solution of one dimensional
Laplace and Poisson’s equation is available in [19].

In this paper, solution of the Laplace’s equation for two dimen-
sional boundary value problems when the host medium is of
fractional dimensional space is derived. Effects on behavior of the
potential due to values of parameters (˛1, ˛2) describing the order
of the fractional space and parameter m describing the azimuthal
and/or radial dependence of potential are discussed. For this pur-
pose, discussion is divided into four cases as follows

• Case 1: ˛1 /= 1, ˛2 /= 1, m /= 0.
• Case 2: ˛1 /= 1, ˛2 = 1, m /= 0.
• Case 3: ˛1 /= 1, ˛2 = 1, m = 0.
• Case 4: ˛1 = 1, ˛2 = 1, m = 0.

The purpose of this discussion is to derive solution for the above
cases and to highlight their difference from corresponding solution
of Helmholtz’s equation. It may  be noted that Case 4 is available
in all undergrade text books on electromagnetics [see e.g., [23]).
Coaxial cable with constant potentials and wedge with constant
potentials are the two examples for Case 4. That is, solution is
only function of radial dependency for coaxial cable whereas only
function of azimuthal dependency for wedge. Case 3 is conversion
of Case 4 to non-integer dimension. Case 2 and Case 1 are about
situations when solution is function of both radial and azimuthal
coordinates. A coaxial cable of constant potential and filled with
fractional space is treated as an example.

2. Exact solution of cylindrical Laplace’s equation in
fractional spaces

For two dimensional potential �(�, �), Laplace’s equation in the
fractional space is given below

∇2
D�(�, �) = 0 (7)

According to the method of separation of variables, potential func-
tion �(�, �) may  be written as product of two functions each of
which depends only on one variable, i.e.,

�(�, �) = f (�)g(�) (8)

This reduces partial differential equation given in (7) into the fol-
lowing two ordinary differential equations
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where parameter m is integer if g(�) is periodic in � while m is
non-integer if range of � is restricted.

If we set � = sin 2�, the derivatives are obtained as given below
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2.1. Analysis for � dependency

For � dependency, Eq. (10) takes the following form
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Comparison of the above differential equation with (B1) given in
Appendix B yields

a0 = 0

b0 = −m2

2

a1 = −(2 − ˛1 − ˛2)

b1 = −(˛2 − 1)

a2 = 2

b2 = −1

x = �

It is obvious that for ˛1 /= 1 and/or ˛2 /= 1, following restriction
holds

a2 /= 0, a2
1 /= 4a0a2.

So, the general solution of (11), under the given restriction, is given
below

g(�) = ek�w(z) = ek�[C1�(a, b, z) + C2z1−b�(a − b + 1, 2 − b; z)]

(12)
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